Logo LVSN
EnglishAccueil
A proposPersonnesRecherchePublicationsEvenementsProfil
A propos
Séminaires

{SOUS_MENU}

 

 

 

 

CERVIM

REPARTI

MIVIM

05-04-2019

Jinsong Zhang
Laboratoire LVSN
Dép. de génie électrique et de génie informatique, Université Laval

All-Weather Deep Outdoor Lighting Estimation



Résumé

We present a neural network that predicts HDR outdoor illumination from a single LDR image. At the heart of our work is a method to accurately learn HDR lighting from LDR panoramas under any weather conditions. We achieve this by training another CNN (on a combination of synthetic and real images) to take as input an LDR panorama, and regress the parameters of the Lalonde-Matthews outdoor illumination model. This model is trained such that it: a) reconstructs the appearance of the sky, and b) renders the appearance of objects lit by this illumination. We use this network to label a large-scale dataset of LDR panoramas with lighting parameters and use them to train our single image outdoor lighting estimation network. We demonstrate, via extensive experiments, that both our panorama and single image networks outperform the state of the art, and unlike prior work, are able to handle weather conditions ranging from fully sunny to overcast skies.


Le séminaire sera présenté à 14h au local PLT-3510.




     
   
   

©2002-. Laboratoire de Vision et Systèmes Numériques. Tous droits réservés