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Diffusive heat transfer problem within a non isotropic stratified structure, containing a
plane defect of non uniform resistance, is solved analytically by the method of integral
transforms. The idea consists in applying Fourier cosine transforms on the space
variables and a Laplace transform on the time variable. The thermal quadrupole
formalism allows to reduce the mathematical model to a product of matrices in the
transformed space.

The direct modeling, within the framework of a 2D geometry, has been followed by
the construction of an inverse procedure that reconstitutes the variation of the thermal
resistance from the measure of the surface temperature. But in the presence of noise, this
solution becomes unstable because the problem is ill-posed. To avoid an unstable
solution, a method of regularization is necessary. It consists in filtering the data to make
our inverse problem well-posed. The inversion can then be undertaken in an explicit way
either in the transformed space, or in the real space. The established technique has been
completed by a method of constrained optimization, in order to guarantee the positivity
of the solution.

The developed inverse codes have been validated by noised numerical simulations and
by a NDT (non destructive testing) operation by stimulated infrared thermography on a
bonding defect between two PVC plates.

Keywords: Non destructive testing; infrared thermography; interface resistance; inverse
methods; composites

*Corresponding author.

79



80 A. BENDADA et al.
1. INTRODUCTION

Because of the quick development of the composite material
technology, mathematics problems linked to the thermal diffusion
within multilayered media have been studied by many researchers.
Several analytic methods have been developed, notably those using
integral transforms [1, 2, 3]. The formers consist in seeking the
solution not in the usual time-space domain, but in a transformed
domain.

In the general case, the methods using integral transforms require a
numerical processing for the calculation of the eigenvalues of the
problem, the rest of the calculation being analytic. The analytic
method advantage is to allow a best comprehension of the physics of
transfer phenomena within the medium studied. Furthermore, these
methods offer a very fast calculation when compared with numerical
methods (such as finite element or finite difference methods). These
numerical methods often require a very thin grid next to singularities.
Nevertheless, the numerical approach remains unchallenged for the
modeling of the thermal behavior of non linear systems and/or those
having a complex geometry [4, 5].

The simplicity of results obtained by integral transforms methods
for the resolution of the direct problem of diffusive heat transfer has
allowed to develop many analytic methods for the resolution of the
associated inverse problem. Applications consist in the determination
of boundary conditions (of heat fluxes or of temperatures), the
estimation of thermophysic properties and the determination of the
geometry of a system. One often succeeds in identifying explicitly
the desired parameters in the transformed space [6, 7, 8, 9, 10].

If one is interested only in the surface temperature, the thermal
quadrupole formalism designed to model 1D transfer within stratified
media is very practical [1]. It allows a very simple matrix handwriting
linking the temporal Laplace transforms of the temperature and the
flux on the face of a layer, to the same quantities on the opposite face.
The matrix linking entry and exit vectors of a multilayered system is
then obtained by setting all the individual matrices in series. Return in
the time domain is often obtained by numerical means.

The notion of thermal quadrupole is also applicable to cases of 2D
or 3D transfer [2, 3, 7, 8, 9]. The idea consists in applying to Laplace
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transforms in time of the temperature and flux, new Fourier integral
transforms (cartesian geometry) in one or two directions of the space.
The multi-dimensional quadrupoles thus obtained have the same
structure as those of 1D modeling, and are thereby used in an identical
way. An interesting application of these techniques is the calculation
of the transient temperature field within 2D or 3D non isotropic
stratified structures comprising plane defects of complex nature.

The precise aim of this article is the illustration of the aforemen-
tioned techniques on a problem of NDT by stimulated infrared
thermography of media comprising a defect of any resistance
[11, 12, 13]. This type of problem is met in industrial applications
(cases of delaminations in fibre reinforced materials for example). The
only assumption of the model is the flatness of the defect. The direct
modeling of heat conduction in the transient problem, in a 2D
geometry, is followed by the construction of an inverse procedure
which allows to identify the spatial distribution of the thermal
resistance and its depth (uniform). The inverse problem is more
arduous than the direct one because of its ill-posed character. This
implies the instability of the solution caused by small variations of the
data [7, 8].

2. PRESENTATION OF THE PROBLEM

Thermal interface resistances are the consequence of a structural
discontinuity between two materials. Examples can be found in the
delaminations within laminated composites or bonding defects at the
interface of two media. They can be detected and possibly estimated
quantitatively by using non destructive techniques. Currently, the
most used method is NDT by ultrasonics. An alternative to this
technique is the pulsed photothermal method, known as “flash
method”.

In this technique, the plate to be inspected is submitted to a heat
pulse on one of its faces, while the temporal evolution of its surface
temperature, either on the heated side (front face), or on the opposite
side (rear face), is recorded by an infrared camera. The presence of a
defect inside the material shows down heat diffusion and induces
consequently a perturbation on the observed temperature field.
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Thermal detection allows to measure this perturbation and to localize
and characterize subsurface defects. The defect is a thermal interface
resistance R, located at some depth e; beneath the stimulated face as
shown in Figure 1.

Because of the absorption of the flash energy (absorbed energy
surface density Q) by the slab front face, diffusion of heat in the
material produces thermograms (temperature 7" versus time 7 curves)
whose qualitative shape is shown in Figure 2a — curve 7'5(¢*) (the star
superscript indicates the dimensionless quantities) for a point located
on front face — and in Figure 2b — curve T'§(#*) for a point located on
rear face — if no defect is present in the slab (R=0). The presence of a
defect (R#0) will affect heat diffusion: the corresponding surface
temperature — curve 7 *(¢*)—will decrease in a slower way (after the
theoretical infinite level reached for a Dirac heat pulse) for a point
located on front face — Figure 2a — while its rise will be slower on a
point on rear face — Figure 2b—.

What has been described above for two different experiments (R =0:
sane slab, R # 0: defective slab) can also apply to the same unique slab
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FIGURE 1 Two-dimensional problem: delamination of limited extent — all four sides
insulated.
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shown in Figure 1. If the sane thermogram is recorded on a point Py
far from the x location of the defect while the “defectuous” one
corresponds to a point P at the same level (same x) as the defect. The
contrast thermogram AT*(t*) = T * — T { (¢*) constitutes therefore a
signature of the defect. It is positive for front side detection (Fig. 2a)
and negative for rear side detection (Fig. 2b).

3. TWO-DIMENSIONAL TRANSIENT HEAT
CONDUCTION MODEL

The interface thermal resistance is modeled by a function of the x
coordinate, the diffusive heat transfer is therefore two-dimensional.
This model has already been used in the case where R is a piecewise
constant function [2, 9, 10]. We extend it here to the more general case
R(x) [7, 8]. The geometry of the problem is presented in Figure 3 (cross
section x—z of the plate). The plate (dimensions: ¢ x ¢) is made out of
an homogeneous non isotropic material, whose one of its principal
directions corresponds to the x axis (conductivities A\, and ), specific
heat pc).

Reduced temperatures and contrast

AT | 1

0 0.2 0.4 0.6 0.8 1.0

.
Fourier number ¢

FIGURE 2a Thermograms and contrast. One-dimensional case. Front face.
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FIGURE 3 Geometry of the problem.

The temperature T(x, z, f) in the plate is solution of the two-
dimensional heat equation:

PT T oT
Mot g =y (n)



NON UNIFORM INTERFACE RESISTANCE 85

with the following associated conditions:

o The plate temperature at initial time (#=0) is assumed equal to
environment temperature:

T=0 (2)
o Lateral surfaces (x=0, £) are supposed to be insulated:

aT
Ay 5o =0 3)

The density of energy Q coming from a Dirac illumination pulse and
absorbed by the front face (z=0) is taken to be uniform in space:

oT
~d5-=0 (1) 4)

The condition on the face opposite to the radiation z=e is:

X5 =0 (5)

At the interface z=e¢,, the resistance produces a temperature jump
with a conservation of flux:

o TSP o Tinf
X oz A 0z ©)
Tsuwp _ inf _ R(x) (—)\z —aa—:) (7

where superscripts sup and inf relate to conditions above and
beneath the resistance plane.

3.1. Formulation in Laplace Domain

It is possible to apply a time Laplace transform to Equation (1) and to
its associated boundary, interface and initial conditions. This trans-
form has the advantage to make the partial temporal derivative
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disappear in the heat equation. The Laplace temperature 7 is defined
thereafter:

T(x,2,p) = /Oooexp(—pt) T(x,z,t)dt (8)

The thermograms in the original temporal space can be calculated
using a numerical inversion algorithm of the Laplace transform, such
as Stehfest’s algorithm [14].

The Laplace temperature obeys the following set of equations:

MOr & p

Wt il N
or
a_0 at x=0,¢ (10)
or
—)\ZE—Q at z=0 (11)
or
E_O at z=e (12)
or*e orinf at . (13)
0z Oz T
Tsup_Tinf:R(x),lp(x7Z7p) at z=e¢ (14)

a, (=, / pc) being the thermal diffusivity of the slab in the z direction
and v (x, z, p) the axial (z direction) Laplace heat flux density given by:

or
=)\, —. 15
(x50 =X 5 (1)
3.2. From the Non Isotropic Problem to the Equivalent Isotropic One

In order to reduce the number of parameters, it is convenient to use
reduced variables:

™ =7/(Qe/X) T*=pceT/Q
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v =9/Q ¢ =e’p/(a;0)
r=a,t/* p*=e’pla,

x* :f(,\z//\x)l/z o :S(Az/)\x)l/z

*=zfe e =eife

R (x™) = R(x)/(e/ ;)

In the following part of this article, superscript * will be omitted for
simplicity reasons. After this reduction of variables, the heat
Equation (9) takes the following form:

Pr O

PR e

3.3. Formulation in Laplace-Fourier Domain

Lateral boundary conditions determine the integral transform that one
has to apply to heat equation (16) in order to solve it. Its resolution by
separation of variables leads to seek solutions of the type:

7(x, z,p) = i [4 sin (a; x) + B cos (a; x)] [C sinh(u;z) a”
=1
+ D cosh(u, z))

with:

u=(p+ a?)m

and o; =in/f with:inaturalinteger (18)
The condition on the extremity x=0, determines the form of the
solution by imposing the one of the two coefficients A4 or B, which is
non zero. In our case, the insulation condition on x=0 implies that
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A=0and B#0. The value of the eigenvalues «; are determined by the
heat insulation condition at the other extremity x=~¢, [15].

One undertakes afterwards the Fourier cosine spatial transform of
function 7(x, z, p):

¢
0(e, z,p) = /0 T(x,z,p) cos (o x) dx (19)

If 6 is known, return to simple Laplace domain is given by:

T(x,2,p) = % Oi=0+2 Z 0; cos (o x) (20)
i=1
with:
gi = 0(&,‘, z, P)

By using transformation (19) and by taking into account boundary
conditions on the edges of the slab, the heat equation becomes:

d*e
:12—2—(p+a2)0:0 (21)

One can notice that obtention of Equation (21) is made possible by the
fact that one has used the eigenvalues «; as particular values of the
transformation variable a and because that boundary conditions in
the x direction were homogeneous. If ¢ is the cosine Fourier transform

of the reduced Laplace flux density 1, the z boundary and interface
(z=e,) conditions become:

e Irradiated surface z=0

sin (a £)

(07

#(e, 0, p) =

e Interface z=¢;

¢
6P — ginf — / R(x) 9 (x, z, p) cos (ax)dx (23)
0
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e Opposite surface z=1
¢ (e, 1,p) =0 (24)

If 6(0), 6(1), ¢(0), ¢(I) are the column vectors having each (n+1)
components (subscripts i =0 to n) that constitute the spectra 6; (0 or 1)
and ¢; (0 or 1) of Laplace temperature and flux density on the front or
rear face, Equations (21)—(24) can be written using three matrices (of
2D quadrupoles) that stem from integration of Equation (21) with
respect to z [2, 7, 8]. The first two of them are associated with layers (1)
and (2), respectively above and beneath the interface plane of Figure 3:

FARE o lston] (25)
L$U=[é Z]M@] (26)

The quadrupoles in this case are block partitioned matrices, each of
them being constituted by diagonal matrices of (n+1) order defined
by:

oA gmter2 ()
0 e Ay(om)

Diagonal matrices B,, C,, D, are constructed the same way:

Ay(cy) = cosh (u; e;) (28a)
B,(av;) :; sinh (u; e;) (28b)
Cy(i) = u; sinh (u; e;) (28¢c)

with:

ou = (p+a2)1/2 fori=0ton

i

e ¢; =(1—e;) being the reduced thickness of the second layer.
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In order to consider the complete spectra of Laplace temperatures
and flux density, one should take n=o0; In practice n will be the
number of harmonics which will be considered.

The right member of Equation (23) is in fact the convolution
product (noted xin Fourier domain) between the Fourier cosine
transform p of R(x) and the corresponding transform ¢(e;) of the
Laplace flux 1 at the location of the interface: Equation (23) can be
written under the ordinary form of a convolution [10]:

m=+00

- 1
f
6P 6 =5 Y pimdm (29)
m=—o00
If one takes into account the parity of the Fourier cosine spectrum and
if one keeps only the positive harmonics, the jump of temperature at
the interface under vectorial form can be written the following way:

O™ — 0™ = pxgp(e) = N, d(er) (30)
with:
00 2p 2p, - 2pn
P1 po+ p2 p1+p3 “ Pn—1 7t Prtl
N Il m p1+p3 po + pa “ Pn—2 7+ Pnt2 (31)
o=
Ll p3  p2tpa pr+ps = Pn=3t Pny3
Pn Pn—1t Pn1 Pn—2+ Put2 - pPo + Pon

p being the column vector that contains all the components of the
spectrum of R(x):

¢
p=1[pop1...pa) with: p; = /0 R(x) cos (a; x) dx (32)

One has now to use the flux conservation equation through the plane
of the defect — transform of (13) — and Equation (30), relative to the
jump of temperature at the interface. The following matrix equation is

obtained:
{df::)] N [10 jﬂ [4,0(;1)] (33)

I and 0 being the identity and zero matrices of order (n+1).
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N, is a convolution matrix constructed with vector p. The sums of
two components of p that appear in the majority of its elements stem
from the fact that only the positive eigenvalues are considered here,
since negative ones were respectively replaced by their opposite values
(p—i= pi). The elimination of the intermediate temperature-flux vectors
in the relationships (25), (26) and (33), allows to link directly condi-
tions on front face (z=0) and on rear face (z=1):

[0(0) p [Al Bl] {I N,| |42 B;||0(1) (342)
(0) Ci A1 0 I]|[C Ax][d(1)

This equation can be generalized for a stack of more than 2 layers
separated by resistances, by superposing in series the matrices relative
to all layers and all interfaces.

Since the rear face is insulated (¢(Z) = 0), one can find starting from
Equation (34a), the rear and front face Laplace-Fourier temperature:

0(0) = (4 + 41 N, C2)(C+ C1 N, C2) ™" (0) (34b)

0(1) = (C+ C1 N, C)'$(0) (34c)
where:
A=A14 +BiC; and C=CiA4;+C A,

Equations (34b) and (34c) can be substracted from the corresponding
equations written for N,=0, this gives the front and rear face
contrasts, A@(0 or 1). A@ is the Laplace-Fourier transfrom of the
reduced temperature difference AT between a point located on the face
of a defectuous slab (reduced temperature 7') and the corresponding
point belonging to a sane slab (reduced temperature T, for R(x)=0):

A0(0) = C;C'N, C; (C+ C1 N, C2) " ¢(0) (35)
A0(1) = —(C+ C1N,C) ' CiN,C,C 1 $(0) (36)
where:

$¢(0)=1[€00...0]' &(1)=[000...0] (37)
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In the case where the interface thermal resistance is small with respect
to the resistance of the checked specimen, simpler expressions of
thermal contrasts are obtained by neglecting the product C; N, C; in
formulas (35) and (36):

e On front face:

sinh (ex(p'/?)) sinh (e u;)

e On rear face:
. 1/2 . )
AT _ sinh (ez(p'/?)) sinh (e; w;) (39)

sinh (p'2)  sinh () ©

As an example, we have shown on Figure 4 the result of a direct
simulation illustrating the time-space repartition of the thermal
contrast corresponding to the profile of defect thickness e, (with two
humps) given by the curve in continuous line in Figure 5. The duration
of the direct program does not exceed 120 seconds in CPU time on a

=
P

&
'7\)

Contrast AT*
o
P

Reduced x* coordinate Fourier number t*

FIGURE 4 Direct simulation of thermal contrast produced by the resistance with two
humps.
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FIGURE 5 Influence of the truncation frequency on the inversion of a “smooth”
resistance: (function R*(x)™ with two humps).

work station IBM RS6000-560 (128 Mo) for a mesh of 128 points in
space and 100 points in time.

One can notice that the analytic approach for the modeling of the
transfer across a 2D non uniform defect could have been extended to
the 3D case (thermal resistance R(x, y)) by proceeding the same way:
one only need to add to the term p+ o of Equation (21) the square of
the eigenvalue (3 in the y third direction, perpendicular to the x axis.
The difficulty appears in the handwriting of the convolution product
corresponding to the jump of temperature at the interface because of
coupling of modes of thermal resistance and flux density spectra.
Nevertheless, in the case of defect of low resistance, the reduction of
the model by the perturbation method [9, 10, 16, 17] gives the follow-
ing explicit results:

e On front face:

__ sinh (u; ) sinh (e; p'/?)
A0 (ai, 5;,0,p) = sinh ( p'/2) sinh (u;)

Pij (40)
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e On rear face:

_sinh (u;e)) sinh (e;p'/?)
sinh ( p!/2) sinh (u;) Py

Ae(ahﬂjvl’p) = (41)

with p; the double Fourier transform of R(x,y) function and
uy=(p+o? + 87"

These expressions have the same structure as 2D Equations (38) and
(39).

In the case of defects of limited size and uniform thermal resistance,
the use of integral transforms allows to construct a linear set of
equations whose unknowns are components of the spectrum vector of
the interface Laplace flux density. The numerical resolution of the set
allows to calculate in the next step the exact superficial 3D temperature
fields [2], thanks to thermal quadrupole formalism.

4. THERMAL RESISTANCE IMAGING

4.1. Explicit Inversion

The problem considered here is to estimate function R(x) starting from
measurement of 7(x, z=0,t). Two quadratures of the measured signal,
corresponding to transformation (8), with the calculation of 7 (x, z=
0, p) and of the Laplace contrast A7(x,z=0, p) and to transformation
(19), allow the estimation of vector Af(z=0, p), p being any value of
the reduced Laplace variable. With N space points sampled (in x), we
will evidently be able to produce no more than N(=n+ 1) discrete
values of the spectrum A# [18]. A is now considered as the new input
signal which will be used for inversion, instead of the original one T
(x, z=0,¢). The difficulty of this problem stems from its strong non
linearity with respect to parameter vector p. Equation (35), for front
face detection, can be put under the following form:

Np a=pxa=>b (42)
where:

a=C,C71¢(0) — C, A0(0) (43)
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and:
b=C,C;'A0(0) (44)

The commutative property of the convolution product (42) allows to
change the non linear inverse problem into a linear one as following:

N.p=b=p=N."b (45)

where matrix N, is constructed starting from components of vector a
the same way as N, starting from p in its definition following Equation
(31). The original distribution of the interface resistance R(x) can be
estimated once p is known by resolution of Equation (45):

1 2

R(x) = 7 pi=0 t+ 7 Z pi €os (e x) (46)
i=1

An alternative explicit inversion algorithm can be found if one
remarks that convolution product (42) in the Fourier space corres-
ponds to a simple product in the original space:

R(x) A(x) = B(x) = R(x) = B(x)/A(x) (47)

where A(x) and B(x) are the originals of vectors a and b.

In the case of low thermal resistance, the identification of spectrum
p harmonic by harmonic is immediate thanks to Equation (38). Since
the resistance and experimental contrast modes are not coupled in that
case. R(x) is obtained by the inverse transform (46). This type of
inversion seems to be very close to Lanczos method (or truncated
decomposition in singular values) [18, 19, 20]. The estimation error of
the spectrum is given by:

(ep); = (eno);/pi fori=1ton (48)

. sinh (e p'/?) sinh (e; ;)
h . i = - :
i . sinh (p!/2) sinh (u;)

(49)

This means that too low values of the singular values y; (large values
of i), will disproportionately amplify the measurement noise. A
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truncation of the spectrum is then necessary in order to obtain a stable
solution.

4.2. Summary of the Inverse Algorithm and Simulation

A large advantage of the formulation of the estimation problem in a
transformed domain is the possibility to construct an inverse
algorithm that is explicit and particularly fast. In order to test
through simulation the above inversion algorithms, it is necessary:

e to choose the type of interface resistance R(x) present in the slab,

e to generate its spectrum p with the maximum number of harmonics
n,

e to choose a number N of equally spaced points on the x axis where
contrast AT has to be calculated for m equally spaced times ¢,

e to calculate, for each of the x points, the Laplace contrast A for the
values of p that are necessary to calculate AT for the m desired times
according to Stehfest’s numerical Laplace inversion algorithm [14];
Vector A@ is first calculated, for these values of p, according to
Equation (35), once a number n of harmonics has been chosen and
Fourier cosine inversion allows calculation of the required A7 in a
way similar as Equation (20).

Once the exact AT solution known on the discrete points in space
and time, one can:

e choose a noise-over-signal ratio characterized by a standard
deviation o, o is the standard deviation of a random noise that
has to be added to contrast AT in order to generate a simulated
experimental signal,

e choose the p value to be used for inversion,

e implement a time quadrature (Trapezoidal rule for example) on this
“experimental”” contrast in order to get an “‘experimental” field on
the front face,

e implement a space quadrature on the previous field for n frequencies
o, in order to generate an “‘experimental” Af(z=0, p) vector,

e calculate “experimental” vectors a and b, given by Equations (43)
and (44),

o cither calculate the specturm p by solution of system (45) and then
estimate R(x) using Equation (46) for the N values of x,
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FIGURE 7 Simulated contrast thermogram at the top of the lower hump of the
resistance with two humps.

noise on the estimated resistance. The methodology of its choice will be
detailed later on. One remarks that the agreement seems to be very
good between the true profile and that identified with n= 5 harmonics
(errors of a few percents in comparison with Ry,y). The perturbation
of information caused by the high frequency noise is illustrated on the
profile estimated with n=25 harmonics by the oscillations around the
exact profile. If conversely, one uses only a few harmonics, the R(x)
function will be probably poorly approximated.

A similar procedure has been implemented for a piecewise constant
resistance that is plotted in Figure 8 (e; =0.16, £=9.235). It corres-
ponds to a square isotropic sample whose dimensional and physical
properties are given in Section 6.1. The estimated profiles using the
same level of noise (c=0.1) as before with n =30 harmonics and n= 60
harmonics are plotted in the same figure. Inversion in this case, has
been performed with the optimal Laplace variable p=9 that is linked
to the depth e; =0.16. One can notice that the results are not as good
as in the preceding case: it is due to the fact that a lot more harmonics
are necessary to take into account the very sharp variation of the
resistance in the edge of the two “doors” (Gibbs phenomena). The
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resistance that is plotted in Figure 8 (e;=0.16, £=9.235). It corres-
ponds to a square isotropic sample whose dimensional and physical
properties are given in Section 6.1. The estimated profiles using the
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harmonics are plotted in the same figure. Inversion in this case, has
been performed with the optimal Laplace variable p=9 that is linked
to the depth e; =0.16. One can notice that the results are not as good
as in the preceding case: it is due to the fact that a lot more harmonics
are necessary to take into account the very sharp variation of the
resistance in the edge of the two “doors” (Gibbs phenomena). The
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FIGURE 8 Influence of the truncation frequency on the inversion of a ‘“hard”
resistance: (‘“double door” R*(x™) function).

noise has affected the significative high frequencies of the true
spectrum.

4.3. 1lI-Posed Character of the Inverse Problem

Any inversion algorithm can produce estimates of the function that is
looked for. A measure of the quality of the inversion requires a
compulsory estimation of the estimation error that has been made, this
can be divided into three parts:

||R;11ng (x) — R(x) || < eénoise t €quadrature + €truncation (50)

with:
€noise = “RnNgm (x) — sz\zm )l (51)
€quadrature — ”R,I:Iom (x) - Rn (x)“ (52)

€truncation = ||Rn(x) = R(x)H (53)
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where the norm is defined by:
2 1
lo P =5 > (o (54)
k=1

and where: RY™(x) is the distribution of the interface resistance
identified from a thermal contrast field corrupted by an additive noise
of constant standard deviation o, space sampled in N points and
temporally in m points, by an inversion using # harmonics,

Ry(x) = R2™ (x)  R(x) = RZ (x) (55)

The error that is produced by the measurement noise e,,.;s alone is the
norm (calculated on the N space points) of the difference between the
estimated resistances with and without noise using n space pulsations.
The second error stems from the quadratures necessary to estimate the
two transforms of the contrast on a limited number of points (2
instead of ['); This second error will be neglected as soon as N and m
are big enough. The third error stems from the necessary truncation of
the spectrum that has to be made. It will strongly depend on the shape
of the R(x) function: either a “smooth” function with few significative
harmonics or a “harder” function as seen above.

By assuming moreover that the measurement noise on the reduced
contrast AT (x, t) is uncorrelated, and of zero average, and that the
second term in the definition of vector @ — Equation (43) — is
negligible (which is legitimate in the case of low resistances), it is
possible to determine the standard deviation o (x) of R(x) created by
the noise since the estimation problem is linear [21]:

(aR,,(x)>2 _ At sinh*(p'/?)
o ~ 2Np \sinh* (e, p'/2)
« (142 . sinhz((p+al?)l/2) sinh? (e2p1/2)0082(a_x)
' sinh? (es(p + a2)'/?) sinh?(p!/2)

(56)

At being the reduced time discretization step, and quadrature being
made with N space points. The interest of this expression is its
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independence of function R(x). If one cancels the term corresponding
to the summation ¥, one obtains the error of a one-dimensional
inversion algorithm (i=0): it gives an easy way to choose a suitable
value for inversion for p for each depth e;. It corresponds to a zero
value of the derivative of this expression with respect to e;. In practice,
the minimum of the estimation error o, (x) weakly depends of the
truncation frequency n and the optimal value can be chosen in a large
interval close to this minimum. Consequently the optimum p deduced
from the 1D linear model is sufficient for the inversion of the
temperature field. The evolution of Laplace variable versus the
interface depth is given in Figure 9. The interest of the optimized
choice of variable p is illustrated by an example of simulation on the
function with “two humps” in Figure 10. The inversion is carried out
from a contrast affected by a noise of standard deviation 0 =0.1. The
optimal Laplace variable corresponding to e; =0.25 is equal to 5. The
identified distribution for this value is less oscillating than that
inverted for p = 1. The standard deviation o g, (x) is plotted in Figure 11
for the following values of the parameters: 0=0.1, N= 128, At=0.01,
m=100, n=15, e;=0.25, £=10 and p=>5. One can notice that the

25 : : , ; .

*

Square root of p optimum

0.2 0.4 0.6 0.8 1.0
Interface reduced depth e:

FIGURE 9 Optimal choice of the reduced Laplace variable for inversion.
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error caused by noise is about 40% higher on the edges of the sample.
This stems from the fact that for the points far from the middle of the
slab, the average distance of the resistance at point x to the different
measurement points (128 equidistant pixels) increases. The result of
this, is that sensitivity of the temperature to the resistance at point x
becomes low, close to the edges of the sample and consequently the
standard deviation becomes larger.

The variation of the norm of the standard deviation of the error
caused by noise, ey (linearized model), ||, (x)||, is plotted versus #,
the number of harmonics (same values of the different constants as
above) in Figure 12 (full circles). The error ey, calculated from
inversion of a computer generated noise (0 =0.1 and o=0) added to
the exact contrast field corresponding to the “two humps” R(x)
function given in Section 4.2, is also shown on the same figure
(squares): it is an increasing function of the number of harmonics and
sticks to the preceding linearized curve for low values of n.

In order to avoid any error caused by the time and space
quadratures introduced during the calculation of integral transforms
used in the direct and inverse problems, the truncation error is
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FIGURE 12 Norm of the estimation error on R*(x*) function with two humps-
0*=0.1,p*=5.
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calculated by a simple Fourier inversion of the “theoretical” spectrum
of the R(x) interface resistance “with two humps”. The former being
calculated by a Fourier transform on a large number of points in order
to get near exact values. The evolution of the truncation error is shown
in Figure 12 too (empty circles): it decreases with n. The result of these
two competitive types of errors is a total estimation error shown in the
same figure (triangles) that possesses a minimum value in the n=10 to
n=18 range. For a given interface resistance, one can therefore choose
an optimal number of harmonics # (which minimizes the estimation
error) to invert the experimental signal. The number of harmonics 7 is
therefore a regularization parameter.

4.4. Regularization Techniques
4.4.1. Spectrum Truncation and Wiener’s Optimal Filtering

As we have seen before, the result of high (spatial) frequency noise is
that when the inverse Fourier transform is performed (following the
deconvolution, system (45)), the essential features of the defect in the
image (in real space) are totally obscured. It is necessary therefore to
carry out one intermediate step in the inverse procedure described
in Section 4.2. The idea consists in filtering out the high spatial
frequencies of A7(x, p) prior to carrying out the inverse program [22].
This filtering limits the resulting quality of the sharp features in the
image.

Some of the noise originates in the detector or arises as a
consequence of the digitization of the signal by the imaging system.
But there is also noise which arises as a consequence of the sampling
linked to the space resolution of the IR camera. The former may affect
not only the high components of the spectrum but the low ones too.

It is then necessary before filtering to determine the average level of
the noise power spectrum (measured at negative times before the flash
heating), in order to compare it to the power spectrum of the
experimental signal at high frequencies. This allows to determine
whether the signal corresponds to the noise in this frequency band or
not. If it is not the case, the sampling is not sufficient and the accuracy
of the algorithm may be affected.

A stochastic study [10] has shown that there is no correlation
between the different harmonics of the experimental signal, A6,
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assuming an additive noise with zero mean and constant standard
deviation on AT. Under these conditions the expectancy of the
measurement noise is the same for all the frequencies except the
fundamental one (i=0). Its value is given by:

a2 At Ax

E[(eas)’] = ¢ =

(1 + b0:) (57)

where &, is Kronecker’s symbol and i corresponds to the harmonic a;.

The separation of the measured signal into signal and noise
components can usefully be done “by eye” from a crude plot of
power spectral density of the Laplace contrast. An improvement of the
inversion can be brought by replacing the abrupt spectrum truncation
by Wiener’s filtering [18, 23]. By this filter, we find that we are able to
remove the high frequencies and still preserve the essential features of
the size and shape of the defects of interest to us. Its principle consists
in applying the optimal filter H; to the measured signal in order to
produce a signal that is close as possible to the true signal. The transfer
function of the filter is:

(a6
0= B+ a6y ik

One can note that this formula involves Ad; the true signal and B;
the noise. The two of these add up to be the measured signal. One can
observe also that H; will be close to unity where the noise is negligible,
and close to zero where the noise is dominant. To determine Wiener’s
filter from Equation (58) we need some way of separately estimating
(A9)? and (B)>.

The power spectrum of a measured signal will often show a signal
peak sticking up above a continuous noise tail (Fig. 13). The noise
spectrum is extrapolated back into the signal region as a “noise
model”. The measured signal power is interpolated by a smooth curve.
The difference between these two curves gives the “true signal model”.
The quotient of the “true model” to the signal plus noise power is
Wiener’s filter H;. The models need not be accurate for the method to
be useful.
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FIGURE 13 Methodology of obtention of optimal Wiener’s filter.

4.4.2. Simulation of Inversion with Filtering

Numerical simulations, intended to test these two ways of low-pass
filtering, have been performed for the inversion of the resistance with
“two humps”. The reduced Laplace contrast profile A7 (p) has been
calculated from “experimental” data described in Section 4.2 and for
the Laplace variable p =5 corresponding to the interface depth e; = 25.
Its distribution is compared with the “‘uncorrupted” signal in Figure
14a. One can notice that the Laplace transformation has considerably
increased the signal-over-noise ratio when compared to the original
signal presented in Figure 7.

An analysis of the power spectrum of the “measured” signal has
shown that the part corresponding to the noise is flat and it spreads on
a large band of frequencies [10]. The useful part of the signal spreads
on a small region in the proximity of the origin, and is constituted
approximately by 15 harmonics. This number corresponds to the
significative frequencies of the true p spectrum given in Figure 6. A
truncation window at this level seems to be adequate for the
regularization of the inversion (Fig. 14b).
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FIGURE 14a Exact and noised Laplace contrast profiles produced by the interface
resistance with two humps (p*=35, 0*=0.1).
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Thanks to the procedure described in the preceding paragraph, we
have been able to determine the transfer function of Wiener’s optimal
filter that is given in Figure 14b too. It is a strongly decreasing
function, which cancels at the forteith harmonic. Profiles identified by
truncation and Wiener’s filtering are compared to the exact profile
(continuous line) in Figure 14c. Results obtained by the two
techniques are equivalent and close enough to the exact profile,
despite the fact that it concerns a case where the resistance is low.

4.4.3. Equivalent Defects Method

The inversion procedures described above, generate local negative
resistances, especially in the case of “hard ” functions (Fig. 8). It is
possible to improve the result by imposing constraints. The idea
consists in estimating in the first time, the interface resistance R(x) by
the algorithm described in paragraph 4.4.1. According to the number
of humps which appear in the identified distribution, one looks for an
interface resistance constituted by the same number of square defects,
in the second time. Each defect is characterized by these parameters:

0.12

exact profile
---------- simulated inversion by spectral truncation |——
————— simulated inversion by Wiener's method

*

*

\

Reduced resistance R (x )
=)
=3
s
|
|

«
Reduced x coordinate

FIGURE 14c Comparison of truncation and Wiener’s methods.
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its level R, its size b and its position x,,. One replaces thus, the problem
of function estimation by a problem of parameter estimation. These
new parameters must make this piecewise constant function the closest
to the estimated function R(x), in the least square sense. Thanks to
Parseval’s theorem, the sum of the quadratic mean deviations to be
minimized can be written in Fourier domain:

n

(R, %m, b) = Arg (min <Z (5 — pi (R, Xm, b))2>> (59)

k=0

where: IAQ, Xoirs b are the parameter vectors to be estimated.

p; is the spectrum estimated by the filtering procedure.
p; is the analytical spectrum of the piecewise constant function.

The initialization of the unknown parameters is carried out using
the local maxima of the estimated resistance R(x): the defect resistance
Ry, correspond to the amplitudes of these maxima, while their centers
(xm)x to their locations. The lateral extensions by correspond to points
characterized by 40% of the amplitude of the maxima, on each side of
them [6]. This choice of the initial parameters makes the convergence
of the optimization algorithm (simplex method) easier: too far values
from the parameters may lead to diverging results.

Numerical simulations have been performed to validate this
technique on the function with “two humps”. The minimum level of
the resistance has been reduced to zero in this six parameter model.
The method gives equivalent parameters representative enough of the
real distribution (Fig. 15). This new global approach, can be very
efficient in the industrial field where the first criteria consist in
thresholds of tolerance for defects thickness and size.

5. DEFECT DEPTH IMAGING

The determination of a simple analytic expression allowing the
identification of the interface depth from the non linear Equation
(35) seems to be difficult. Nevertheless, one can obtain a set of
equations whose the only unknown is the depth e; by eliminating the
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FIGURE 15  Estimation of the function R*(x*) with two humps and estimation of the
two pieces closest to this function.

presence of R(x) from Equation (47). By writing the equation for two
distinct values of the variable p, one obtains:

B(x, p,e1) _ B(x, pa,en) (60)
A(xv plael) A(X, PZ:el)

The interface depth can then be determined by solving the set of
equations using the non linear least square method on the totality of
pixels x; of the experimental thermal contrast:

A : B(xiaplael) B(xi7p2ae1) g
i SaT (mln (; (A(xi, pi,en) N A(x;, Pz,el)) )) (1)

The initialization of the optimization can be performed by a first
estimation of the interface depth from the linear model (Eq. 38)
written for the fundamental mode (a = 0):

sinh? (e, p'/?)
A6(0,0,p) = ——"2p, 62
( P) sinhz(pl/z) P ( )
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If one notes R and A7(0,p) the respective spatial averages of the
function R(x) and the reduced Laplace contrast A7(0, x, p), the
preceding expression becomes:

) 1/2
Erop) - @r ) g (63
sinh” (p'/2)
If one writes this relationship for two distinct values p; and p, of
Laplace variable p (with p,=4 p,), one can eliminate the parameter R.
If one confuses the two space average experimental Laplace contrasts
my and my (calculated from the recorded temperature field using
Eq. (8)) with their theoretical equivalents A7(0, p;) and A7(0, po),
an analytic expression of the depth, function of m; and m, is available:

1/2
(é1)min =1 —ﬁ x In ((@> cosh((pl)l/z)
1

m

' <(’%> cosh®((p1)"/?) - 1)1/2>

Stemming from the linear model, this value can be very close to the
true one in the case of defects of low resistances or for those that are
close to one of the two faces of the test slab (Cy/V,C; negligible in
formula (35)).

The preceding procedure have been performed for the smooth
resistance described in Section 4.2 (e;=0.250). Thanks to Equation
(64), we obtain an approximate value of the interface depth:
(€1)init = 0.270. An improvement of this solution is brought using the
optimization Equation (61): é; = 0.233. Although the artificial thermal
signal AT used for inversion was very noised (0 =0.1), this result is
very satisfactory (local error AR(x)=7%).

To study the influence of a bad estimation of the depth on the
resistance inverse problem, we have done simulations starting from the
not noised data shown in Figure 4 [10]. The “two humps” function
identified using the exact depth e;=0.25 is very close to the true
resistance. However, a 20% error Ae; on the depth implies a 30%
local error AR(x) on the resistance.

Apart from the interface depth, the eigenvalues of the problem are
also assumed to be known in the resistance inversion program. A bad

(64)



112 A. BENDADA et al.

estimation of the thermal conductivities of the material constituting
the sample, or a bad measurement of its dimensions introduces a
mistake on the reduced width ¢ and consequently on the eigenvalues
(see Section 3.2). As for the depth, we have simulated starting from the
same data as above, the influence of this error on the identified R(x); A
10% error on the reduced width has practically no impact on the
inversion results [10].

Another factor which can introduce an error on the estimated
quantities is the choice of the reference zone. Effectively, observing the
infrared frame and selecting the same region is a flawed approach. In
the context of a linear model, we have been able to analyze the effect of
a bad choice of the undisturbed data. If the “sane zone” is in reality
defective and admits R, as thermal resistance, one shows [10] that the
estimated R is in fact an over-resistance with respect to Ry: R=R;— R,
(R, being the real resistance of the defect). On the other hand, one
shows that there is no error on the estimated depth e; [10].

6. EXPERIMENTAL VALIDATION

6.1. Description of the Experiment

In practice, it is very difficult to calibrate an artificial defect of known
characteristics. A thermal resistance profile with “two doors” has been
realized by sticking two PVC square plates. The bonding has been
insured by an adhesive film that has been deposited on the whole
interface except two parallel bands, creating thus a piecewise constant
thickness of air e;({ =58 mm, e = 6.28mm, e;=1mm, pc=1.327
10°Im 3K, a,=a,=1.248 107" m? s_l) and therefore a thermal
interface resistance profile [e;(x) = (Az/A)e R(x) with \; =)\, =0.026
W m~'K™"]. The thickness profile has been measured by an optical
way (first door: thickness=0.144 mm for a width of 3 mm, second
door: thickness=0.159 mm for a width of 5 mm) [10]. These values
have been chosen in such a way that 2D effects of heat transfer are
important enough [24]. The distribution of the defect thickness is
shown in Figure 17b (curve 1). The reduced values correspond to
e;=0.16, £=9.235 (same dimensions as in paragraph 4.2). The rear
faces of the sample have been coated with a black paint in order to get
high uniform emissivity and absorptivity.
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The temperature field on the front face of the two-layered specimen
(vertical) was recorded by a short wave infrared analyzer AGEMA
782 SW. Heat pulse excitation was produced by an assembly of four
flash tubes located on the sides of a 10 cm vertical square. The
duration of the photothermal radiation corresponds to a few
milliseconds for an incident energy Q of 3 to 4 J cm™ 2, The IR
analyzer endowed with a DATAMIN acquisition system, has been
used to produce, to digitize and to store the thermographic signal.
After the falsh heating, the IR frames have been recorded during
149.76 s with a period of 0.64 s. The side of the sample corresponds to
120 pixels on the IR images.

Figure 16 displays a frame of the sample in absolute temperature
5.12 s after the flash, time when the thermal contrast on the largest
stripe is at its maximum. A quick inspection of this thermographic
image allows easily to choose a sane zone, where internal defect
presence cannot be found. It is the set of pixels delimited by a rectangle
on the infrared image. This zone will be used later for the calculation
of the thermal contrast, which constitutes the entry signal of the
inverse methods. In practice, the normalization of the temperature
field is done on a local basis: it considers an absorbed energy Q at the
level of P that may differ from the corresponding quantity at point P
on the same face. This operation has also the advantage of completely
cancelling the effect of space varying distribution of the absorptivity
on the front face (flash band) and of the emissivity of the measured
face (IR sensor).

In front face detection, for insulating materials (which is the case
here), the Biot number of heat losses is important, and the asymptotic
level at the end of the thermogram does not exist. In a such case, the
asymptotic adiabatic temperature in each point, can be evaluated at
the short times of the relaxation temperature curve. Indeed, the
thermogram at that times obeys to the model of a semi-infinite sane
medium [10]. If one calls T the dimensional temperature at point P
recorded immediately after the flash heating — at dimensional time ¢
of the first frame for example —, one has:

r——92 (65a)

(7r)\zpcts)1/2
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FIGURE 16 Thermographic frame (7 (°C)) at 1=5.12 s after the flash heating: time
when the contrast on the largest defect is at its maximum. (See Color Plate I).

If the experiment was adiabatic, one would have for a same local
excitation Q:

T = — (65b)

By elimination of Q between relationsheeps (65a) and (65b), one
obtains:

T = Ty(mt¥)"/? (65c¢)

where ¢ is the Fourier number corresponding to time f,. The
evaluation of Ty, at point Py is done the same way starting from
the temperature T, at that point at time #,. One can then calculate the
local contrast by another way:

1 T T,
AT, =——— = —=—|=T"-T, 65d
e () (Ts T0s> ’ (654)
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This new formula allows to produce a contrast very close to the one
without heat losses. One can note that the depth is obviously known in
this case, since it is equal to the thickness of the first layer (e; =1 mm).
It will be nevertheless estimated by the procedure described in Section
5, in order to test its performance. Furthermore, the spatial distri-
bution of the thermal resistance will be identified by the different
inverse methods developed.

6.2. Experimental Interface Resistance Identification

In this section, we will compare the merits of the different inversion
techniques using the experimental data of line 30 indicated on the
temperature frame of Figure 16. The interface depth will be set to its
exact value that is e;=0.16. The value of the corresponding optimal
Laplace variable is p=9. The Laplace contrast profile calculated with
this value is shown in Figure 17a. One remarks that on the sample
edges, the signal varies brutally. This can be explained either by heat
losses on these extremities, or by a non uniform energy deposit on the
front face.

The power spectrum of the thermal contrast has shown that the
measurement noise predominates above the thirtieth frequency. A

x

Reduced Laplace contrast At (x)

0.04

-0.04

20 40 60

x coordinate in mm

FIGURE 17a Laplace contrast profile calculated with p*=9.
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truncation window selecting the first thirty harmonics seems to be
appropriate to take into account the useful part of the experi-
mental profile, although the exact spectrum is rich in higher space
frequencies. The transfer function of Wiener’s filter stemming from
the spectral study of the experimental data, is calculated according to
Equation (58).

The distribution obtained from an inversion with n=30 harmonics
(curve 2) is compared to this exact profile (curve 1) in Figure 17b. The
distribution corresponding to an inversion using Wiener’s filter (curve
3) is shown in the same figure. The agreement between the profile
identified by the two 2D techniques and the exact distribution seems
satisfactory, except for the values obtained next to the boundaries
(probably an effect of a non uniform flash stimulation) and the levels
of maxima of the two “doors”. The two kinds of low-pass filtering
used give close enough results.

One can notice that the 2D spectral inversion procedure used is not
based on any assumption on the function to be estimated, except the
number of harmonics that has to represent it. The function R(x) is
defined by a set of scalars (a finite number of eigenvalues) only. In our

0.2
r
—_— (1 -
\" 0] —— 2
I A
1 A
i \ [
0.1 l ki \ 2 .
= | 3 @ —n
< | { I I
2 A | i/ . A
E L i \ ,/\ . /'\,f ]
£ i SRCEES. S 1 S
5 o N N2 A N
< 1% N4 S A VA W 4
I y mta: SR == 4T v
| ‘rfy —-—-— (2) experimental inversion by spectral truncation | ...
| \L —— (1) exact profile -
Vi e (3) experimental inversion by Wiener's method
\
-0.1 .
0 20 40 60

x coordinate in mm

FIGURE 17b  Profile of defect thickness: experimental inversion by truncation (n =30
harmonics) and Wiener’s techniques.
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opinion, that constitutes an important advantage on other inversion
procedures, like Tikhonov regularization method [25], which requires
the adjustment of two a priori arbitrary parameters: the number of
pieces that is going to represent the dicretized function and the
regularization coefficient. Of course, in practice, a general function can
not be accurately estimated from any given data. In our problem, the
space resolution on R(x) depends on the space resolution of the
infrared camera.

6.3. Experimental Inversion Using Equivalent Defects Method

The consideration of a priori hypothesis, which can be formulated
starting from the rough profile (2) of Figure 17b alone: * the resistance
R(x) is a function constituted only of two non zero pieces”, allows, by
the equivalent defects method described in Section 4.4.3, to determine
the six parameters characterizing the two “doors”. The derived
distribution — Figure 18 — is very close of the exact distribution
although it concerns low thermal resistances.

0.2 T
1
1 A -
S -
: A A
- \
8 -] — —
= | | i ,
N A AN 8 \ N I A W W
< b Y
inversion by truncation -
--—-— inversion by equivalent defects technique |
—--—--- exact profile
-0.1 i
0 20 40 60

x coordinate in mm

FIGURE 18 Profile of defect thickness: estimation of a function (truncation n=30)
and estimation of the two pieces closest to this function.
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6.4. Comparison with 1D Algorithm

The comparison of results obtained by the 2D spectrum truncation
method and by the 1D inverse technique, is illustrated in Figure 19.
The 1D inverse problem is solved analytically and assumes that the
defect and plate widths are infinite with a uniform thermal resistance
[6]. One can see clearly that there is no large difference between the
spatial evolutions of the two identified functions.

This does not mean that 2D phenomena are non-existent, but one
can explain it by the fact that the elimination of the high spatial
frequencies has decreased the spatial resolution of the procedure in
such a way that one no longer distinguishes the advantage brought by
2D modeling.

Infact, during non noised simulations, this anomaly does not
appear, because all the harmonics until Shanon frequency have been
taken into account. The advantage that brings the 2D modeling is then
observable (Fig. 20). This advantage can become significant during
experimental data processing, if the signal-over-noise ratio is good
enough. This would be possible by using the new IR matricial cameras
which offer an accuracy of about 0.01°C.
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FIGURE 19 Profile of defect thickness: comparison between 1D and 2D inversions.
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FIGURE 20 Profile of defect thickness: comparison by simulation between 1D and 2D
inversions of true data.

It is interesting to note that the profiles in Figure 19 have been
obtained by processing only a single line of each frame of the
thermographic film. The average of twenty lines ( possible here because
the y direction does not intervene) allows to recognize the square
aspect of the two doors (improvement of the signal-over-noise ratio) —
Figure 21—.

Another way to reduce the effect of the noise is to stimulate the
sample with a more large energy Q. This operation would be very
interesting especially for very deep defects for which contrasts are very
weak. However, it should not be forgotten that with very high energy
the sample is risked to be burned up; Which is very far from the
objective of a NDT operation.

6.5. Experimental Interface Depth Identification

The determination of the interface depth has required the calculation
of two spatial profiles of the reduced Laplace contrast for two different
values of the reduced variable p(p; =1 and p,=4). The implementa-
tion of the depth inverse algorithm gives a first estimation of the
reduced value (&), = 0.076, thanks to Equation (64). This first
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FIGURE 21 Profile of defect thickness: experimental identification by truncation
(n=60 harmonics), average of 20 lines.

identification has been used for the initialization of a least square
method to approach more closely the true depth e; =0.160 (=1 mm).
The processing yields a final value é; = 0.115, which corresponds to
0.725 mm depth. The inaccuracy of this result is doubtless due to the
abnormal shape of the temperature field next to the vertical sides of
the specimen (Fig. 17a).

A simulation on the same resistance distribution has been carried
out starting from a computer generated noised contrast AT(c=0.1).
This time, the approximate value of the depth is (é),,;, = 0.127 and
the final identified one is é; = 0.147. The former is very close of the
true depth.

7. CONCLUSION

The use of analytic methods based on integral transforms in time and
in space has allowed to model the transient heat diffusion through a
non uniform plane defect, in a plate of simple geometry. The problem
has been solved using a simple enough mathematical formalism that
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takes into account the non uniform interface resistance (2D thermal
quadrupole). In NDT by stimulated infrared thermography, the use of
these same integral transforms, calculated this time from the recorded
temperature field, allows to characterize the defect in an explicit and
fast way.

The tomographic approach for non uniform defect characterization
described in the course of this work, could have be extended to 3D
case (thermal resistance R(x,y)) by proceeding the same way. The
difficulty lies of course in the writing of the convolution product
because the coupling of thermal resistance and interface heat flux
density modes. In order to discard this difficulty, analytic approxi-
mative techniques such as perturbations method [9, 10, 16, 17] joined
to the assumption of separability of the double spectrum, could have
give a first approximation of the solution. The former will be able to be
refined thereafter by analytic or numerical methods.

In industrial applications the calculation time may be a very
important factor. It is interesting to notice that a combination of the
1D method — Figure 19 — with the method of the equivalent defects,
can be very effective since it represents a very good compromise
between precision and calculation time. The 1D inversion is ten time
more rapid than that taking into account 2D phenomena.

One can note finally that the characterization method described in
this paper, in addition to its rapidity and its accuracy, offers the
possibility to be applied in-situ and notably when the access is difficult
or limited to a single side of the slab to be inspected (front face
process). Furthermore, the new technology of matricial analyzers,
which offers a high frame frequency, will allow to extend NDT by
infrared thermography to thin and therefore rapid materials (metallic
slab welding, thin coating, etc...). However, this technique has a
disadvantage of being not very sensitive to deep defects or for the bad
heat conductors.

References

[1] Degiovanni, A. (1988). Conduction dans un mur multicouche avec sources:
extension de la notion de quadripdle, International Journal of Heat and Mass
Transfer, 31, 553—557.

[2] Batsale, J. C., Maillet, D. and Degiovanni, A. (1994). Extension de la méthode des
quadripoles thermiques a l'aide de transformations intégrales — Calcul d’un



122

3]

4

(5]
(6]

[

8]

&)

(10]

[11]
(2]

(13]
[14]
(15]
[16]

(17

(18]
(19]
[20]

(21]

A. BENDADA et al.

transfert thermique au travers d’un défaut plan, International Journal of Heat and
Mass Transfer, 37(1), 111-127.

Leturcq, Ph., Dorkel, J. M., Ratolojanarhary, F. E. and Tounsi, S. (1993). A two-
port network formalism for 3D heat conduction analysis in multilayered media,
International Journal of Heat and Mass Transfer, 36(9), 2317-2326.

Ramos, F. M. (1992). Résolution d’un probléme inverse multidimensionnel de
diffusion par la méthode des éléments analytiques et par le principe de I'entropie
maximale: contribution a la caractérisation de défauts internes, Thesis, Ecole
Nationale Supérieure de I’Aéronautique et ’'Espace, France.

Raynaud, M. and Bransier, J. (1986). A new finite difference method for the non
linear inverse heat conduction problem, Numerical Heat Transfer, 10, 27—-42.
Maillet, D., Houlbert, A. S., Didierjean, S., Lamine, A. S. and Degiovanni, A.
(1993). Non-destructive thermal evaluation of delaminations in a laminate.
Identification by measurement of a thermal contrast (Part I). The experimental
Laplace transform method (Part II), Composites Science and Technology, 47,
137-172.

Bendada, A., Batsale, J. C., Degiovanni, A. and Maillet, D. (1994). Interface
resistances: the inverse problem for the transient thermal technique, Inverse
Problems in Engineering Mechanics (Proc. ISIP 94), Balkema, Rotterdam, NL,
pp. 347-354.

Maillet, D., Batsale, J. C., Bendada, A. and Degiovanni, A. (1996). Méthodes
intégrales et contrle non destructif par thermographie infrarouge stimulée, Revue
Générale de Thermique, 35, 14-27.

Batsale, J. C., Bendada, A., Degiovanni, A. and Maillet, D. (1993). Distribution of
a thermal contact resistance: inversion using experimental Laplace and Fourier
transformations and an asymptotic expansion, Proc. Ist International Conference
on Inverse problems in engineering, Palm Coast, ASME New York, pp. 139-145.
Bendada, A. (1995). Tomographie infrarouge stimulée Estimation d’une résistance
d’interface non uniforme, Thesis, Institut National Polytechnique de Lorraine,
France.

Balageas, D., Krapez, J. C. and Cielo, P. (1986). Pulsed photothermal modeling of
layered materials, J. Appl. Phys., 59, 348—357.

Cielo, P., Maldague, X., Deom, A. and Lewark, R. (1987). Thermographic non
destructive evaluation of industrial materials and structures, Mater. Eval., 45,
452-466.

Vavilov, V. P. and Taylor, R. (1982). Research Techniques in NDT, 5th edn.
Academic Press, London.

Stehfest, H. (1970). Remarks on algorithm 368, Numerical inversion of Laplace
transforms, Comm. A.C.M, 13, 47—-49.

Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Clarendon
Press, Oxford.

Aziz, A. and Na, T. (1984). Perturbations Methods in Heat Transfer, Springer,
Berlin.

Hagen, K. D. (1987). A solution to unsteady conduction in periodically layered,
composite media using a perturbation method, Technical note, Trans. A. S. M. E.
J. Heat Transfer, 109, 1021 -1023.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1989).
Numerical recipes, Cambridge University Press, London.

Linz, P. (1994). A new numerical method for ill-posed problems, Inverse Problems,
10(1), L1-L6.

Golub, G. H. and Van Loan, C. F. (1989). Matrix computations, second edition,
Ed Jhons Hopkins University Press, Baltimore and London.

Beck, J. V. and Arnold, K. J. (1977). Parameter estimation in engineering and
science, John Wiley and Sons, New York.



[22]

(23]

[24]

[25]

NON UNIFORM INTERFACE RESISTANCE 123

Murio, A. D. (1993). The mollification method and the numerical solution of ill-
posed problems, Wiley interscience publication.

Thomas, R. L., Favro, L. D., Crowther, D. J. and Kuo, P. K. (1992). Inversion of
thermal wave infrared images, Eurotherm conference n°27, Proc. QIRT92,
pp. 278 -282.

Lamine, A. S. (1988). Caractérisation de défauts dans les matériaux composites par
thermographie infrarouge, Thesis, Institut National Polytechnique de Lorraine,
France.

Tikhonov, A.N.and Arsenine, V. Y. (1977). Solution of ill-posed problems, V. H.
Winston and Sons, Washington, D. C.



