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ABSTRACT 
 
In this paper, we review some of the discrete signal transforms that are in use in the field of thermography for defect 
detection and/or characterization. Signal transformation is used with the purpose of finding an alternative domain where 
data analysis is more straightforward. For instance, it is possible to pass from the time domain to the frequency spectra 
through the one-dimensional discrete Fourier transform (DFT). The DFT constitutes the basis of pulsed phase 
thermography (PPT) [1], but other transformations are possible such as the discrete wavelet transform (DWT) [2] with 
the advantage that, in this case, time information is preserved after the transformation. It is also possible to rearrange 
data into domains others than frequency. For instance, the Hough transform (HT) allows the detection of regular forms 
(e.g. lines, curves, etc.) in a parameter space. The HT has been used in two different ways in thermography: for the 
detection of lines in thermal profiles, with the goal of discriminating between defective and non-defective regions [3]; 
or it can be used to locate the inflection points in phase profiles obtained by PPT to extract the blind frequencies [4]. 
The Laplace transform can also be used in the time domain to improve flaws detection and their characterization in the 
transformed space [5]. Eigenvector-based transforms, such as singular value decomposition (SVD), have also been 
implemented. Principal component thermography (PCT) uses SVD to decompose thermographic data into a set of 
orthogonal modes [6]. We discuss all these transforms and provide some comparative results. 
 
Keywords: Pulsed thermography, signal processing, Fourier transform, wavelet transform, Laplace transform, Hough 

transform, singular value decomposition. 
 
 

1. INTRODUCTION 
Pulsed thermography is carried out as depicted in Figure 1, i.e. after a thermal pulse  is sent to the surface of the 
specimen , thermal changes on the surface are recorded with an infrared camera . Data is stored as large 3D 
matrices containing both spatial (x-y coordinates) and temporal (z coordinate) information , and processed  (e.g. 
through the Fourier transform). Data is usually processed in two ways: (1) at the pixel level as 1D vectors through time; 
and/or (2) as 2D matrices (images or thermograms) at a particular time. In this paper, we present five techniques that are 
currently used to convert 1D temporal data into a transformed space and we discuss how this transformation is 
beneficial for defect visualization and characterization.  
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Figure 1. Data acquisition system in pulsed thermography:  thermal excitation;  heat propagation through the 

specimen;  thermogram recording;  data recording; and  processing, e.g. with the Fourier transform. 
 
We begin our discussion with the Fourier transform, which is by far the most commonly used transform in the field of 
signal processing and which constitutes the basis of pulsed phase thermography (PPT). 
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2. THE FOURIER TRANSFORM 

2.1. Theory 
The Fourier transform (FT) is a valuable tool in signal and image processing that gives us access to an alternative (e.g. 
frequency) space. The main interest is either to simplify data analysis or to reduce the amount of computational effort 
(e.g. image compression). The idea behind the FT is that it is possible to reconstruct any 1D function at a particular 
space (e.g. temperature evolution in time) as a summation of sinusoidal terms of increasing frequency. Sinusoids are 
used since they possess an interesting property that is not observed in any other waveform, i.e. a sinusoidal input to the 
system will produce a sinusoidal output (sinusoidal fidelity). This means that, after decomposing the signal in the time 
domain into sinusoids, the frequency and the waveform will be the same at the output and each one of the resulting 
terms in the frequency space will differ only in amplitude A, and phase φ. 
 
The discrete FT (DFT) can be written in its complex form as follows [7, 8, 9]: 
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where j2=-1, n designates the frequency increment (n=0,1,…N); ∆t is the sampling interval; Re and Im are the real and 
the imaginary parts of the transform, respectively. The fast Fourier transform algorithm (FFT) available in MATLAB®: 
fft(...), allows processing the signal more effectively. Real and imaginary parts of Eq. (1) can be used to calculate 
the discrete amplitude An, and the discrete phase φn of the transform and to reconstruct 3D matrices as illustrated in 
Figure 1. This is called pulsed phase thermography [1]. 

2.2. Pulsed phase thermography using the Fourier transform 
Figure 2a presents a typical temperature profile for a pixel from the thermogram matrix in Figure 1 following a pulsed 
thermography experience. As seen in Figure 2b and c, this kind of function (real) will produce an amplitude and phase 
response that are even and odd, respectively, with respect to f=0 Hz (i.e. n=N/2) after the application of the FT. 
Therefore, from a sequence of N thermograms, there are N/2 useful frequency components; the other half of the spectra 
only provides redundant information and can thus be safely discarded. Hence, the whole data sequence can be processed 
with the FT so amplitude and phase sequences can be reconstructed.  
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Figure 2. (a) Temperature; (b) amplitude; and (c) phase profiles for a pixel on the frequency spectra for a non-defective 

pixel on coordinates (i,j) as indicated in Figure 1. 
 
The interesting aspect of working in the frequency space is that problems such as emissivity variations in the surface, 
reflections from the environment, non-uniform heating, and surface shape variations, which typically affect pulsed 
thermal data, have a considerable lesser impact on the phase, therefore, defect contrast is improves. This is true for data 
coming from a lock-in thermography experience [10, 11] as well as from PPT [12]. PPT has the advantage that an entire 
phase profile becomes available from a single experience, provided that data is correctly sampled and truncated [13]. 
Furthermore, a depth inversion procedure using phase data from PPT has been recently proposed [12]. 
 
 
 

FT 
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2.3. Depth inversion with the phase 
Figure 3 depicts the phase and phase contrast profiles for 
the case of thick defects (flat-bottomed holes) at two 
different depths. The phase profiles for the positive part of 
the spectra for two defects at different depths (φz1, φz2), and 
for a sound area (φzs), are shown at the bottom part of this 
graph. Phase contrast (∆φz1, ∆φz2) can be calculated from 
the phase profiles as: ∆φ=φd-φSa, where φd is the phase of a 
defective pixel, and φSa is the phase for a non-defective 
pixel. The negative value for the phase contrast is used for 
convenience. Defects are visible (i.e. ∆φ>0) from f=0 Hz to 
a given frequency, named the blind frequency fb, i.e. the 
frequency at which the phase contrast is enough for a defect 
to be visible, which is lower for deeper defects (fb,z1 > fb,z2). 
Phase profiles for defective pixels merge with the phase 
profile for a sound area into a straight line for frequencies 
higher than the corresponding blind frequencies (f > fb). 
Consequently, shallow defects have a larger frequency 
range of visibility than deep defects. 

-∆φ [rad]

f [Hz]

φ [rad]

z1z2

∆φ z2

∆φ z1

φ z2(f)

0

φ z1(f)

φ zs(f)

fs
---------

2
fc=

Specimen

Deeper 
defects

fb,z1

fb,z2

Figure 3. Depth quantification with the phase contrast 
and blind frequency. 

 
A linear relationship exists between defect depth z, and the inverse square root of the blind frequency, i.e. fb

1/2. The 
thermal diffusion length expressed by [10]: µ=(2α/ω) with α=k/ρcP being the thermal diffusivity and ω=2πf the angular 
frequency, can be used to fit experimental data [12]: 
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where reported values for C1 are around 1 for amplitude data, and between 1.5 and 2 (when working with phase data 
obtained by photoacoustics [10] and lock-in thermography [11]), with a value of 1.8 typically adopted. The regression 
constant C2 gives an indication of the fitting error. 
 
The phase contrast defined above can be used to determine fb, although automatic determination without the need of a 
sound area definition is also possible [12]. Figure 4 shows the depth inversion results using two steel plates with flat-
bottom holes (30x30 mm2) at different depths ranging from 1 to 4.5 mm as indicated [14].  
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Figure 4. Depth inversion results for two steel plates with 4 flat-bottom holes each (30x30 mm2) at different depths 
ranging from 1 to 4.5 mm as indicated. Phasegrams at f=0.27 Hz for specimen (a) S001; and (b) S002; and correlation 

results using Eq. (2). Data from [14]. See color figures on last page. 
 

Phasegrams from both specimens are shown at the left and the correlation results from Eq. (2) are presented on the 
right. As can be seen from Figure 4c, the depth z, is highly correlated to the diffusion length µ, and the slope of the 
regression (C1=1.72) is in agreement to previously reported values (i.e. 1.5 < C1< 2). 
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3. THE WAVELET TRANSFORM 

3.1. Theory 
As mentioned in the previous paragraph, the FT uses a series of infinite sinusoidal waves to reconstruct any type of 
signal. Nevertheless, this way of representing a function can cause some problems when the signal contains transient 
components and/or sharp variations. The wavelet transform (WT) was intended as an alternative transformation 
algorithm to better represent transient functions. Instead of using waves (e.g. the sinusoids) as in the FT, the WT uses 
wavelets (i.e. waves of limited duration) as its basis functions. The use of wavelets allows processing the information at 
different scales (or resolutions) by decomposing the signal into stretched and scaled replicas of a base wavelet, which 
allows a better approximation of sharp functions. Furthermore, contrary to the FT, the transformed space after the 
application of the WT does not contain a frequency coordinate; but rather a scale-time joint representation. This time 
preservation characteristic of the WT is of great interest for quantitative evaluations since depth is directly linked to 
time. 
 
The continuous WT of a function f(t) can be written as [15]: 
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where Wf denotes the WT, T is the translation factor, S is the scaling factor, and hST is the daughter wavelet defined from 
the mother wavelet h: 
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where ωo provides the size of the Morlet wavelet h(t) chosen here as the mother wavelet.  
 
The discrete WT (DWT) is in fact, the continuous WT evaluated at discrete scales and translations. Function 
dwt(...) from MATLAB® can be used for this matter. Both real and imaginary parts become available, as seen on 
equation (3), so that phase and amplitude images can be computed as in the case of the FT.  

3.2. Quantitative pulsed phase thermography using the wavelet transform 
Figure 5 presents the phasegrams obtained using the DWT at different scaling factors for a CFRP specimen with impact 
damage. Phasegram in Figure 5a corresponds to a damage zone near the surface. Deeper defect features are revealed 
gradually for increasing translation factors from Figure 5b to d. From these results, it is possible to provide a direct 
inversion of the defect depth for a given S through the calibration of T, using phase data obtained with the WT. 
 

(a) (b) (c) (d) 
Figure 5. Relationship between the depth z and the translation factor through the phase using the WT: T= (a) 1.2; 

(b) 1.8; (c) 2.4 and (d) 3. Impact damage on a CFRP specimen. See color figures on last page. 
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Figure 6 shows the phasegrams for a 1 and 3 mm depth defects (flat-bottom holes in aluminum) and the regression 
results for T vs. z at 8 different depths. As can be seen, defects are clearly visible and data is highly correlated. 
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Figure 6. Correlation results for an aluminum specimen with flat-bottomed holes: phasegrams as a function of T for a 
line passing over the defect center at z= (a) 1 mm; (b) 3 mm; and (c) correlation results using all the inspected depths. 

 
 

4. SINGULAR VALUE DECOMPOSITION 

4.1. Theory 
As explained above, the FT provides a valuable tool to decompose signal in the temperature-time space to a phase-
frequency space but it does so through the use of sinusoidal basis functions, which may not be the best choice for 
representing transient signals (as the temperature profiles typically found in pulsed thermography). Singular value 
decomposition (SVD) is an alternative tool to extract spatial and temporal data from a matrix in a compact or simplified 
manner. Instead of relying on a basis function, SVD is an eigenvector-based transform that form an orthonormal space. 
Lets assume data are represented as a MxN matrix A (M>N), then the SVD allows writing [6]: 

A=URVT (5)

with R being a diagonal NxN matrix (with singular values of A present in the diagonal), U is a MxN matrix, VT is the 
transpose of an NxN matrix (characteristic time). A singular value decomposition function, svd(...)is available in 
MATLAB®.  
 
The operation in Eq. (5) is illustrated in Figure 7. The columns of U represent a set of orthogonal statistical modes 
known as empirical orthogonal functions (EOF) describing spatial variations of data [6]. On the other hand, the 
principal components (PCs), representing the time variations, are arranged row-wise in matrix VT. As will be pointed 
out below, this characteristics of the SVD approach are very useful for pulsed thermography applications. 
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Figure 7. Singular value decomposition of matrix A into matrices U, S and VT. 

4.2. Principal component thermography 
Principal component thermography (PCT) [6, 19] uses SVD to extract the spatial (EOFs) and temporal (PCs) 
information from a thermogram matrix. The thermographic 3D matrix needs to be rearranged as a 2D matrix with time 

Proc. of SPIE Vol. 6205  620514-5



U

• I 5U
. S

• C'
• S • •

U • •

•SS

 

 

along the columns and space as illustrated in Figure 8a. After applying the SVD to the 2D matrix, the resulting U 
matrix, providing the spatial information, can be rearranged as a 3D sequence as illustrated in Figure 8b. 
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Figure 8. (a) Thermographic data rearrangement from a 3D sequence to a 2D A matrix in order to apply SVD; and (b) 

rearrangement of 2D U matrix into a 3D matrix containing the EOFs. See color figures on last page. 
 
Figure 9 shows the first five EOFs for a cropped portion of a 10 plies CFRP specimen with 25 Teflon® inclusions 
obtained after applying PCT [18]. The inclusions, ranging from 3 to 15 mm in lateral size, are distributed in rows having 
the same depth (from top to bottom: z=1.0, 0.6, 0.2, 0.4 and 0.8 mm). Two cases are considered: data with no 
preprocessing (vignetting, fixed pattern noise) at the top row, and preprocessed data with cold image subtraction at the 
bottom. Later EOFs show mostly noise. For the uncorrected case, the first image (EOF1) shows the vignetting effect and 
the fixed pattern noise (FPN). The FPN is still present at the second image (EOF2), but it no longer shows any 
vignetting, non-uniform heating shows up instead. Interestingly, the next three EOFs do not present any of these 
degradation sources, only defects and the specimen fiber matrix are seen.  
 

(a) (b) (c) (d) (e) 
Figure 9. PCT results for the case of uncorrected data (top), and for preprocessed data (bottom) with cold image 

subtraction: (a) EOF1; (b) EOF2; (c) EOF3; (d) EOF4; and (e) EOF5. 
 
From these three images it is possible to detect 22 of the 25 inclusions. For the case when PCT is applied to 
preprocessed data, there is no vignetting or FPN but is still strongly affected by non-uniform heating. Non-uniform 
heating is well distinguished in EOF1 but is no longer visible on later EOFs. Defect visibility is improved with respect to 
the uncorrected case; it is possible now to detect 24 of the 25 inclusions with EOF2 to EOF5, and the fiber matrix can be 
seen in EOF2. 
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5. THE HOUGH TRANSFORM 

5.1. Theory 
The Hough transform [16] is a standard tool in image analysis that allows recognition of patterns in an image by finding 
geometrical structures that can be parameterized as straight lines, polygons, circles, etc. It is based on the polar 
representation of a straight line (in Cartesian coordinates: y=mx+b), which is given by [9, 17]: 

θθρ sincos yx +=  
(6)

where ρ is the radius and θ  is the angle of a normal to the line of origin. The pair (ρ,θ) defines a vector from the origin 
to the nearest point of the line. Eq. (6) can be used, however the hough(…) function in MATLAB® greatly speed up 
the calculations. 
 
Any pattern in the x-y space can be transformed to a parametric ρ - θ  space, or Hough space. For instance, any line in 
the x-y plane corresponds to a dot in the ρ-θ space, and any point in the x-y plane corresponds to a sinusoidal curve in 
the ρ - θ  space. Hence, each single point that lies on a straight line in the Cartesian space as the black markers (A, B, C, 
D, E, F) in Figure 10a, plot to a sinusoidal curve in the Hough space, as in Figure 10b, and all of these curves must 
intersect at a point (ρ0,θ0) representing the line they all have in common [9]. If a second set of points (white markers 
denoted as a, b, c, d, e, f) are located randomly in such a way that they perfectly fit the same straight line, their 
corresponding sinusoidal counterparts in the Hough space will approximately intersect at the same point, as in Figure 
10c.  
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Figure 10. (a) Six points forming a perfect (black) and an approximated (white) straight line in the Cartesian space; and 

the Hough space representation for the six (b) black (A, B, C, D, E, F); and (c) white points (a, b, c, d, e, f). 
 
The distribution of points around the intersection point in the Hough space provides an indication of the goodness of the 
fitting in the Cartesian space. There are two interesting applications of the HT to thermography as explained next. 

5.2. Analysis of pulsed thermographic sequences 
Thermal profiles from a PT experience present a typical behavior. Figure 11 shows an example for a Plexiglas® plate 
with 6 flat-bottom holes of different depths on the rear side. Temperature for a non-defective pixel can be modeled 
approximately with the 1D solution of the Fourier equation for a homogeneous semi-infinite plate, i.e. temperature will 
decay following a -0.5 slope on a logarithmic scale. On the contrary, defective pixels will diverge from this behavior at 
a given instant, which is related to its depth (see Figure 11a). The HT can be used to identify the pixels from a 
thermogram sequence that follow this -0.5 slope in time. To do so, the HT is applied pixel-wise to the entire sequence. 
From Eq. (6) and with m=-cos(θ) /sin(θ), the region of interest in the Hough space is located around an angle 
θ≈1.1071 rad [3]. Analyzing the distribution of points in the θ≈1.1071 rad column (see Figure 11b), it is possible to 
determine statistically if a pixel belongs to a non-defective or a defective area. 
 
The Hough space can be seeing as an accumulator that sums up the votes of all pixels in the sequence. Since every point 
in the Cartesian space will produce a sinusoid in the Hough space, and each point along this sinusoid will get a vote 
added to each point in the real space, the crossing points in the Hough space will provide an indication of the location of 

Proc. of SPIE Vol. 6205  620514-7



20 40 60 80 100120140160180200220
Distance along profile

0 004000

O 1111±111±!!! 1!!! 1!!!! 1!! 11±! 11O.025_-
20 40 60 80 100120140160180200220

Distance along profile

0.4

Zn = O.OOO7Ln - 0.063225 /
0.3 /

0.25 p
0.2

N
0.15 /

0.1 • Data man

— Linear Fittin Data

0 200 400 600 800 1000

IthEm]

Thgphi Ig
2C

— 4C

6C

÷ Pt 4
$Pth2 •

÷ Pt 5

I3.5
2.5

1ooP' •15
20 40 60 80 100 120 140

b) IpI

0.5 [6
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

log

Pt.1- Defective area

 

 

the local maxima that define a straight line. The histogram distribution for a non-defective area shows a sharp decay 
(when compared to a defective area, see Figure 11c) that can be modeled by an exponential function of the form [3]: 
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As noted in [3], parameters a and c are highly correlated to the depth of the defect, the deeper the defect the broader the 
histogram distribution (see Figure 11c), and can be used to determine whether a pixel is part of a defective or non-
defective area and also to have a good idea of its relative depth. 
 

 

 
  

(a) (b) (c) 
Figure 11. Plexiglas® specimen with 6 flat-bottom holes at different depths: (a) thermogram (top) showing 6 selected 

locations and their corresponding thermal profiles (bottom); (b) Hough space for points 1 (defective) and 5 (non-
defective); and (c) corresponding histogram distribution of the values in column θ≈1.1071 rad. Data from [3]. 

 

5.3. Differentiated absolute phase contrast 
The HT can also be applied on PPT experiences provided that data has been adequately sampled and truncated and that 
enough information is available at high frequencies. As portrayed in Figure 3, phase profiles have an approximately 
linear behavior between the blind frequency and the maximum available frequency. Hence, the HT can be used to 
identify the blind frequency (i.e. fb) without the need of selecting a sound area. The process has been automated [4], the 
final result of the so-called differentiated absolute phase contrast (DAPhC) is a blind frequency image (Figure 12a) that 
can be used to extract the depth information as shown in Figure 12b for the Plexiglas® plate described above. 

 
Figure 12. (a) Blind frequency image; and (b) correlation between depth and blind frequency. Data from [4]. 
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6. THE LAPLACE TRANSFORM 

6.1. Theory 
The Laplace transform (LT) is commonly used to reduce the problem of solving differential equations to an algebraic 
problem. In this way, instead of looking for an analytical solution in the original space, it is possible to solve the 
problem in the Laplace space, which hopefully will exhibit an explicit form (and often does) and thus, providing a 
physical insight of the problem in hand. Interestingly, initial value problems are solved without first determining a 
general solution and then transformed back to the original space. This concept is not new. For instance, Carslaw 
proposed in 1921 to replace the heat diffusion equation and its initial boundary conditions by a linear matrix equation 
linking the input and output vectors in the Laplace space [20], though it was not until recently that appropriate inversion 
tools and computer power were available to actually implement this. The LT is a valuable instrument for solving the 
direct and inverse problems of one or multi-dimensional diffusion within a multilayer composite containing one or 
several defects as described next. 

6.2. Using the continuous Laplace transform to solve the direct problem in 1D heat diffusion 
Figure 13 illustrates the problem of heat 
diffusion through a slab having two 
composite layer of thickness e1 and e2 (e=e1+ 
e2 is the total thickness), submitted to a Dirac 
heat pulse δ(t)Q. A delamination is located 
between the two layers, and is characterized 
by a thermal resistance Rc. The temperature 
at the front and rear surfaces are denoted Tf 
and Tr, respectively. The Laplace transform 
of Tf and Tr, i.e the Laplace temperatures θf 
and θr, can be derived using thermal 
quadrupoles [21]. 

δ(t)Q
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e1

e2

(1)

(2)

Rc e

Tr 

 
Figure 13. Bi-layer composite of thickness e (e=e1+ e2), 
with a delamination of a thermal resistance Rc, 
submitted to a Dirac heat pulse δ(t)Q. 

 
The quadrupole matrix equation will have the following form for the two layer slab considered in Figure 13: 
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(8)

where subscripts 1 and 2 corresponds to the first and second layers of the material, respectively and: 

( ) ( ) ( ) ( )ααλααα pepCpepkBpeA jxjjjjj sinh;sinh1;cosh ===  
(9)

where j is 1 or 2 (for each layer); the thermal diffusivity α and the conductivity k are taken only in the transverse 
direction since heat diffusion is 1D, and p is the Laplace variable. Reference [5] provides some guidelines for the 
correct determination of p. 
 
After algebraic manipulation (see [21] for details), the Laplace thermal contrast for the reflection and transmission 
modes can be written as: 
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(11)

where θSa,f and θSa,r are the Laplace transforms of the reference temperature (sound area, Sa) on the front and rear faces, 
respectively. Eqs. (10) and (11) are explicit equations that can be use to solve the inverse problem as explained next. 
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6.3. Using the discrete Laplace transform to solve the inverse problem 
Having developed an expression for the LT of the signal in the transformed space, it is now possible to derive explicit 
inversion solutions. The discrete Laplace transform can be written in its dimensionless form as follows [22]: 
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with the dimensionless parameters (denoted with an *) defined as: 
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There are three definitions for the thermal contrast depending on the situation: ∆Ttrans is used for the transmission case, 
∆Tref,short is convenient for the reflection mode when the thermal profiles do not reach stabilization (e.g. low conductivity 
materials and/or short acquisition times); and ∆Tref,long is preferred for the reflection mode when a stabilization 
temperature is attained (e.g. high conductivity materials and/or long acquisition times):  
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Eq. (12) can be applied pixel by pixel resulting in a unique image for every value of the reduced Laplace variable p*. 
With this information, it is now possible to derive an explicit solution for the dimensionless thermal resistance R*

c and 
for the dimensionless depth z of a defect, respectively [5, 22]: 
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where m1 and m2 are the LT for p*
1 and p*

2 (p*
2=4 p*

1), respectively, R*
c= Rc/(e/k) and z*=z/e. 

 
Eqs. (15) and (16) rely on a 1D heat conduction model. Nevertheless, the 2D and 3D cases have also been addressed by 
implementing a Fourier transformation after the Laplace transform leading to an analytical expression in terms of a 
Laplace-Fourier (2D case), or a Laplace-Fourier-Fourier space (3D case). Figure 14 shows an example of application 
using perturbation modeling in transient 3D heat transfer on a 60x60x2 mm3 14 layer CFRP slab with a 10x10 mm2 
Teflon® 25 µm inclusion at the center [5]. The estimated resistance for this case, using Eq. (15), was R*

c =0.185, which 
is ~153% higher than the actual value of R*

c =0.073. Two causes for this deviation were identified [5]: the high noise 
levels and the presence of trapped air between CFRP and Teflon® layers. 
 

   
(a) (b) (c) 

Figure 14. (a) Thermogram at t=2s, (b) theoretical Laplace distribution calculated for z=0.5 mm; and (c) experimental 
Laplace profile (continuous) with theoretical profile (dotted line) superimposed for comparison. Data from [5].  
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7. CONCLUSIONS 
A wide variety of transformation algorithms can be applied to thermographic pulsed data in order to analyze the 
information in an alternative space. The Fourier transform constitutes without a doubt the most commonly used 
transform in signal processing. The FT uses sinusoids as basis functions to decompose the signal from the temperature-
time space to a phase or amplitude-frequency space. The phase have proven to be very useful not only for qualitative 
but also for quantitative analysis. Although the use of oscillatory waves is very convenient in order to extract amplitude 
and phase delay information, it may not be the optimal choice to correctly represent transient signals (as the temperature 
profiles typically found in pulsed thermography). The use of waves of limited duration, or wavelets, constitutes an 
interesting alternative. The results presented here using the wavelet transform demonstrate the potential of wavelets for 
depth inversion. Efforts are now directed to an optimal selection of the mother wavelet in order to increase time 
resolution at early times. Instead of defining a basis function, another possibility is to use statistical modes to 
discriminate spatial and temporal information. Singular value decomposition provides a compact representation of data 
by sorting the spatial information as a set of empirical orthogonal functions (EOFs) and time information as a set of 
principal components (PCs). We presented the case of a CFRP specimen for which defect visibility was considerably 
enhanced even for unprocessed data.  
 
The Hough transform is another standard transform in signal processing that can be used with thermographic data but in 
a different way. It is possible to detect lines (and other geometrical forms) through the HT. Two applications were 
described here: an automation algorithm for defect detection from thermal profiles, and a procedure for the automatic 
detection of the blind frequencies from a phase profile.  
 
We concluded with the Laplace transform, which can be used to solve the direct and the inverse problem for one or 
multidimensional heat conduction. We illustrated this approach for the case of a bi-layer composite material. 
 
The progressive and continuous increase in computer power together with the availability of transformation tools within 
most common software commercial packages encourages further developments in the field. For instance, a Hough 
transform module was added in the latest release of MATLAB® (v. 7) dramatically reducing the calculation times from 
several hours using Eq. (5), to several minutes using the hough(...) function, and there is still room for 
improvement. 
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