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Abstract

Over the course of the last decade, infrared (IR) and particu-
larly thermal IR imaging based face recognition has emerged
as a promising complement to conventional, visible spectrum
based approaches which continue to struggle when applied
in the real world. While inherently insensitive to visible spec-
trum illumination changes, IR images introduce specific chal-
lenges of their own, most notably sensitivity to factors which
affect facial heat emission patterns, e.g. emotional state, am-
bient temperature, and alcohol intake. In addition, facial ex-
pression and pose changes are more difficult to correct in IR
images because they are less rich in high frequency detail
which is an important cue for fitting any deformable model. In
this paper we describe a novel method which addresses these
major challenges. Specifically, to normalize for pose and fa-
cial expression changes we generate a synthetic frontal image
of a face in a canonical, neutral facial expression from an im-
age of the face in an arbitrary pose and facial expression. This
is achieved by piecewise affine warping which follows active
appearance model (AAM) fitting. This is the first publication
which explores the use of an AAM on thermal IR images;
we propose a pre-processing step which enhances detail in
thermal images, making AAM convergence faster and more
accurate. To overcome the problem of thermal IR image sen-
sitivity to the exact pattern of facial temperature emissions we
describe a representation based on reliable anatomical fea-
tures. In contrast to previous approaches, our representation
is not binary; rather, our method accounts for the reliability
of the extracted features. This makes the proposed represen-
tation much more robust both to pose and scale changes. The
effectiveness of the proposed approach is demonstrated on
the largest public database of thermal IR images of faces on
which it achieved 100% identification rate, significantly out-
performing previously described methods.

Introduction
Notwithstanding the substantial and continued research ef-
fort, the practical success of face recognition using conven-
tional imaging equipment has been limited. In an effort to
overcome some of the key challenges which remain, such
as appearance changes due to varying illumination and dis-
guises (including facial wear and hair), the use of imag-
ing outside the visible part of the electromagnetic spectrum
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(wavelength approximately in the range 390− 750 nm) has
been explored. Most notably, the use of infrared data (wave-
length approximately in the range 0.74− 300 µm) has been
increasingly popular, in no small part due to the reducing
cost of infrared cameras.

In the literature, it has been customary to divide the IR
spectrum into four sub-bands: near IR (NIR; wavelength
0.75 − 1.4µm), short wave IR (SWIR; wavelength 1.4 −
3µm), medium wave IR (MWIR; wavelength 3− 8µm), and
long wave IR (LWIR; wavelength 8 − 15µm). This divi-
sion of the IR spectrum is also observed in the manufac-
turing of IR cameras, which are often made with sensors
that respond to electromagnetic radiation constrained to a
particular sub-band. It should be emphasized that the divi-
sion of the IR spectrum is not arbitrary. Rather, different
sub-bands correspond to continuous frequency chunks of the
solar spectrum which are divided by absorption lines of dif-
ferent atmospheric gasses (Maldague 2001). In the context
of face recognition, one of the largest differences between
different IR sub-bands emerges as a consequence of the hu-
man body’s heat emission spectrum. Specifically, most of
the heat energy is emitted in LWIR sub-band, which is why
it is often referred to as the thermal sub-band (this term
is often extended to include the MWIR sub-band). Signif-
icant heat is also emitted in the MWIR sub-band. Both of
these sub-bands can be used to passively sense facial ther-
mal emissions without an external source of light. This is
one of the reasons why LWIR and MWIR sub-bands have
received the most attention in the face recognition literature.
In contrast to them, facial heat emission in the SWIR and
NIR sub-bands is very small and systems operating on data
acquired in these sub-bands require appropriate illuminators
i.e. recognition is active in nature. In recent years, the use of
NIR also started received increasing attention from the face
recognition community, while the utility of the SWIR sub-
band has yet to be studied in depth. An up to date, thorough
literature review can be found in (Ghiass et al. 2013b).

Advantages of IR The foremost advantage of IR data
in comparison with conventional visible spectrum images
in the context of face recognition lies in its invariance to
visible spectrum illumination. This is inherent in the very
nature of IR imaging and, considering the challenge that
variable illumination conditions present to face recogni-



tion systems, a major advantage. What is more, IR en-
ergy is also less affected by scattering and absorption by
smoke or dust than reflected visible light (Chang et al. 2008;
Nicolo and Schmid 2011). Unlike visible spectrum imag-
ing, IR imaging can be used to extract not only exterior but
also useful subcutaneous anatomical information, such as
the vascular network1 of a face (Buddharaju et al. 2007) or
its blood perfusion patterns (Wu et al. 2007). Finally, ther-
mal vision can be used to detect facial disguises (Pavlidis
and Symosek 2000) as well.

Challenges in IR The use of IR images for AFR is not
void of its problems and challenges. For example, MWIR
and LWIR images are sensitive to the environmental temper-
ature, as well as the emotional, physical and health condition
of the subject. They are also affected by alcohol intake. An-
other potential problem is that eyeglasses are opaque to the
greater part of the IR spectrum (LWIR, MWIR and SWIR)
(Tasman and Jaeger 2009). This means that a large portion
of the face wearing eyeglasses may be occluded, causing
the loss of important discriminative information. The com-
plementary nature of visible spectrum images in this regard
has inspired various multi-modal fusion methods (Heo et al.
2004; Arandjelović, Hammoud, and Cipolla 2006). Another
consideration of interest pertains to the impact of sunlight if
recognition is performed outdoors and during daytime. Al-
though invariant to the changes in the illumination by vis-
ible light itself (by definition), the IR “appearance” in the
NIR and MWIR sub-bands is affected by sunlight which has
significant spectral components at the corresponding wave-
lengths. This is one of the key reasons why NIR and SWIR
based systems which perform well indoors struggle when
applied outdoors (Li et al. 2007a).

Previous work The earliest attempts at examining the po-
tential of infrared imaging for face recognition date back
to the work done in (Prokoski, Riedel, and Coffin 1992).
Most of the automatic methods which followed closely mir-
rored the methods developed for visible spectrum based
recognition. Generally, these used holistic face appearance
in a simple statistical manner, with little attempt to achieve
any generalization, relying instead on the availability of
training data with sufficient variability of possible appear-
ance for each subject (Cutler 1996; Socolinsky et al. 2001;
Selinger and Socolinsky 2004). More sophisticated holistic
approaches recently investigated include statistical models
based on Gaussian mixtures (Elguebaly and Bouguila 2011)
and compressive sensing (Lin et al. 2011). Numerous fea-
ture based approaches have also been described. The use
of locally binary patterns was proposed in (Li et al. 2007b)

1It is important to emphasize that none of the existing publica-
tions on face recognition using ‘vascular network’ based represen-
tations provide any evidence that the extracted structures are indeed
blood vessels. Thus the reader should understand that we use this
term for the sake of consistency with previous work, and that we
do not claim that what we extract in this paper is an actual vascu-
lar network. Rather we prefer to think of our representation as a
function of the underlying vasculature.

and (Goswami et al. 2011), SIFT features in (Maeng et al.
2011), wavelets in (Srivastana and Liu 2003) and (Nicolo
and Schmid 2011), and curvelets in (Xie et al. 2009). The
method in (Wu et al. 2005) is one of the few in the liter-
ature which attempts to extract useful subcutaneous infor-
mation from IR appearance. Using a blood perfusion model
Wu et al. infer the blood perfusion pattern corresponding to
an IR image of a face. In (Buddharaju, Pavlidis, and Tsi-
amyrtzis 2005) the vascular network of a face is extracted
instead. Buddharaju et al. represent vascular networks as a
binary images (each pixel either is or is not a part of the
network) and match them using a method adopted from fin-
gerprint recognition: using salient loci of the networks (such
as bifurcation points). While successful in the recognition
of fingerprints which are planar, this approach is not readily
adapted to deal with pose changes expected in many practi-
cal applications of face recognition. In addition, as we will
explain in further detail in ‘Multi-scale blood vessel extrac-
tion’, the binary nature of their method for vascular network
extraction makes it very sensitive to face scale and image
resolution.

Method details
Our algorithm comprises two key components. The first of
these involves the extraction of an image based face rep-
resentation, which is largely invariant to changes in facial
temperature. This invariance is achieved by focusing on the
extraction of anatomical information of a face, rather than
absolute or relative temperature. The other component of
our algorithm normalizes the changes in the person’s pose
by creating a synthetic IR image of the person facing the
camera in a canonical, neutral facial expression. A detailed
explanation of the two methods, as well as different prepro-
cessing steps necessary to make the entire system automatic,
is explained in detail next.

Pose normalization using the AAM
Much like in the visible spectrum, the appearance of face
in the IR spectrum is greatly affected by the person’s head
pose relative to the camera (Friedrich and Yeshurun 2003).
Therefore it is essential that recognition is performed either
using features which are invariant to pose changes or that
pose is synthetically normalized. In the present paper we
adopt the latter approach. Specifically, from an input im-
age of a face in an initially unknown pose (up to 30◦ yaw
difference from frontal) we synthetically generate a frontal,
camera facing image of the person using an active appear-
ance model (AAM) (Cootes, Edwards, and Taylor 1998).
Although widely used for visible spectrum based face recog-
nition (Feng et al. 2011; Sauer, Cootes, and Taylor 2011), to
the best of the knowledge of these authors, this is the first
published work which has attempted to apply it on IR data
(specifically thermal IR data).

Face segmentation One of the key problems encountered
in practical application of AAM is their initialization. If
the initial geometric configuration of model is too far from
the correct solution, the fitting may converge to a locally
optimal but incorrect set of values (loci of salient points).



This is a particularly serious concern for thermal IR im-
ages since thermal appearance of faces is less rich in detail
which guides and constrains the AAM. For this reason, in
our method face segmentation is performed first. This ac-
complishes two goals. Firstly, the removal of any confound-
ing background information helps the convergence in the
fitting of the model. Secondly, the AAM can be initialized
well, by considering the shape and scale of the segmented
foreground region.

Unlike in the visible spectrum, in which background clut-
ter is often significant and in which face segmentation can
be a difficult task, face segmentation in thermal IR images
is in most cases far simpler. Indeed, in the present paper we
accomplish the bulk of work using simple thresholding. We
create a provisional segmentation map by declaring all pix-
els with values within a range between two thresholds, Tlow
and Tup, as belonging to the face region (i.e. foreground) and
all others as background. An example is shown in Fig. 1(a).
The provisional map is further refined by performing mor-
phological opening and closing operations, using a circular
structuring element (we used a circle whose approximate
area is 6% of the area of the segmented face ellipse). This
accomplishes the removal of spurious artefacts which may
occur at the interface between the subject’s skin and clothing
for example, and correctly classifies facial skin areas which
are unusually cold or hot (e.g. the exposure to cold surround-
ings can transiently create cold skin patches in the regions of
poor perifocal vascularity). An example of the final segmen-
tations mask is shown in Fig. 1(c) and the segmented image
output in Fig. 1(d).

(a) (b) (c) (d)

Figure 1: The first step in the proposed algorithm is to segment out
the face. This removed image areas unrelated to the subject’s iden-
tity and aids in the convergence of the AAM. From (a) the original
image (b) provisional segmentation mask is created using tempera-
ture thresholding, after which (c) morphological operators are used
to increase the segmentation accuracy to outliers e.g. such as which
occur at the interface of facial and non-facial regions, producing (d)
the final result with the background correctly suppressed.

Detail enhancement As mentioned earlier, thermal IR im-
ages of faces are much less rich in fine detail than visible
spectrum images (Chen, Flynn, and Bowyer 2003), which
be readily observed in the example in Fig. 2(a). This makes
the problem of AAM fitting all the more challenging. For
this reason, we do not train or fit the AAM on segmented
thermal images themselves, but on processed and detail en-
hanced images. In our experiments we found that the addi-
tional detail the proposed filtering brings out greatly aids in
guiding the AAM towards the correct solution.

The method for detail enhancement we propose is a form
of non-linear high pass filtering. Firstly, we anisotropically

diffuse the input image. We adopt the form of the diffusion:
∂I

∂t
= ∇. (c(‖∇I‖)∇I) = ∇c.∇I + c(‖∇I‖) ∆I, (1)

with the diffusion parameter c constant over time (i.e. fil-
tering iterations) but spatially varying and dependent on the
magnitude of the image gradient:

c(‖∇I‖) = exp

{
−‖∇I‖

k2

}
. (2)

We used k = 20. The detail enhanced image is then com-
puted by subtracting the diffused image from the original:
Ie = I − Id. This is illustrated on a typical example in
Fig. 2(a,b).

(a) Diffused (b) Enhanced

Figure 2: The AAM is notoriously sensitive to initialization. This
potential problem is even greater when the model is used on ther-
mal images, which lack characteristic, high frequency content.
We increase the accuracy of AMM fitting first by (a) creating an
anisotropically smoothed thermal image, which is then (b) sub-
tracted from the original image to produce an image with enhanced
detail.

Inverse compositional AAM fitting The type of an ac-
tive appearance model we are interested in here separately
models the face shape, as a piecewise triangular mesh, and
face appearance, covered by the mesh (Cootes, Edwards, and
Taylor 1998). The model is trained using a data corpus of
faces which has salient points manually annotated and which
become the vertices of the corresponding triangular mesh.
These training meshes are used to learn the scope of varia-
tion of shape (i.e. locations of vertices) and appearance of
individual mesh faces, both using principal component anal-
ysis i.e. by retaining the first principal components as the ba-
sis of the learnt generative model. The model is applied on a
novel face by finding a set of parameters (shape and appear-
ance principal component weights) such that the difference
between the corresponding piecewise affine warped image
and the model predicted appearance is minimized. Formally,
the fitting error can be written as:

eaam =
∑

All pixels x

[
A0(x) +

m∑
i=1

αiAi(x)− Ie(W(x;p))

]2
(3)

where x are pixel loci, Ai (i = 0 . . .m) the retained ap-
pearance principal components and W(x;p) the location of
the pixel warped using the shape parameters p. For addi-
tional detail, the reader is referred to the original publication
(Cootes, Edwards, and Taylor 1998).

The most straightforward approach to minimizing the er-
ror described in Eq. 3 is by using gradient descent. However,



this is slow. A popular alternative proposed in (Cootes, Ed-
wards, and Taylor 1998) uses an approximation that there
is a linear relationship between the fitting error term in
Eq. 3, and the updates to the shape and appearance pa-
rameters, respectively ∆p and ∆αi (more complex varia-
tions on the same theme include (Sclaroff and Isidoro 1998;
Cootes, Edwards, and Taylor 2001)). What is more, the lin-
ear relationship is assumed not to depend on the model pa-
rameters, facilitating a simple learning of the relationship
from the training data corpus. While much faster than gra-
dient descent, this fitting procedure has been shown to pro-
duce inferior fitting results in comparison to the approach
we adopt here, the inverse compositional AAM (ICAAM)
(Matthews and Baker 2004). Our experiments show that the
advantages of ICAAM are even greater when fitting is done
on thermal IR images, as opposed to visual ones (used by all
of the aforementioned authors).

There are two keys difference between the conventional
AAM fitting and ICAAM. Firstly, instead of estimating
a simple update of the parameters ∆p, the compositional
AAM algorithm estimates the update to the warp itself, i.e.
W(x,p). This particular idea was first advanced in (Lucas
and Kanade 1981). Secondly, in the inverse compositional
algorithm, the direction of piecewise linear warping is in-
verted. Instead of warping the input image to fit the reference
mesh, the warping is performed in the opposite direction. In
other words, the error minimized becomes:

eicaam =
∑

All pixels x

[Ie(W(x;p))−A0(W(x;p))]2 . (4)

While it can be shown that the minimization of Eq. 4 is
equivalent to that of Eq. 3, this inverse formulation allows
much of the intensive computation to be pre-computed, thus
resulting in faster convergence in addition to the increased
fitting accuracy provided by the compositional AAM. A typ-
ical result of applying our approach is shown in Fig. 3.

(a) (b)

Figure 3: (a) A converged AAM mesh show superimposed on the
segmented and enhanced thermal image, and (b) a synthetic im-
age of a frontal face generated by piecewise affine warping of the
original image.

Multi-scale blood vessel extraction
Following the application of piecewise affine warping of the
input image using ICAAM, all training and query faces are
normalized for pose variations and the corresponding syn-
thetically generated images contain frontal faces. Our goal
in this stage of our algorithm is extract from these images
a person-specific representation which is firstly invariant to

temperature changes and secondly robust to small imperfec-
tions of the preceding pose normalization.

Differences from previous work As already argued in
‘Introduction’, the absolute temperature value of a partic-
ular point on a person’s face can greatly vary as the condi-
tions in which IR data is acquired are changed. The relative
temperature of different regions across the face is equally
variable – even simple physiological changes, such as an in-
crease in sympathetic nervous system activity are effected
non-uniformly. These observations strongly motivate the de-
velopment of representations which are based on invariable
anatomical feature, which are unaffected by the aforemen-
tioned changeable distributions in heat emission.

The use of a vascular anatomical invariant was proposed
in (Buddharaju et al. 2007). The key underlying observa-
tion is that blood vessels are somewhat warmer than the sur-
rounding tissues, allowing them to be identified in thermo-
grams. These temperature differences are very small and vir-
tually imperceptible to the naked eye, but inherently main-
tained regardless of the physiological state of the subject. An
important property of vascular networks which makes them
particularly attractive for use in recognition is that the blood
vessels are “hardwired” at birth and form a pattern which re-
mains virtually unaffected by factors such as aging, except
for predictable growth (Persson and Buschmann 2011).

In the present work we too adopt a vascular network based
approach, but with several important differences in compari-
son with the previously proposed methods. The first of these
is to be found in the manner vascular structures are extracted.
Buddharaju et al. adopt the use of a simple image processing
filter based on the ‘top hat’ function. We found that the out-
put produced by this approach is very sensitive to the scale of
the face (something not investigated by the original authors)
and thus lacks robustness to the distance of the user from
the camera. In contrast, the approach taken in the present pa-
per is specifically aimed at extracting vessel-like structures,
and it does so in a multi-scale fashion, integrating evidence
across scales, see Fig. 4. The second major difference lies in
the form in which the extracted network is represented. Bud-
dharaju et al. produce a binary image, in which each pixel
is deemed either as belonging to the network or not, without
any accounting for the uncertainty associated with this clas-
sification. This aspect of their approach makes it additionally
sensitive to variable pose and temperature changes across
the face; see (Chen et al. 2011) for related criticism. In con-
trast, in our baseline representation each pixel is real-valued,
its value quantifying the degree of confidence (∈ [0, 1]) that
it is a part of the vascular structure.

Vesselness We extract characteristic anatomical features
of a face from its thermal image using the method proposed
in (Frangi et al. 1998). Their so-called vesselness filter, first
proposed for the use on 3D MRI data, extracts tubular struc-
tures from an image. For a 2D image consider the two eigen-
values λ1 and λ2 of the Hessian matrix computed at a cer-
tain image locus and at a particular scale. Without loss of
generality let us also assume that |λ1| ≤ |λ2|. The two key
values used to quantify how tubular the local structure at
this scale is are RA = |λ1|/|λ2| and S =

√
λ21 + λ22. The

former of these measures the degree of local ’blobiness’.



Vascular network of Buddharaju et al.

(a) 100% (b) 90% (c) 80% (d) 70%

Proposed vesselness response based representation

(e) 100% (f) 90% (g) 80% (h) 70%

Figure 4: One of the major limitations of the approach proposed
by Buddharaju et al. lies in its ‘crisp’ binary nature: a particular
pixel is deemed either a part of the vascular network or not. A con-
sequence is that the extracted vascular network is highly sensitive
to the scale of the input image (and thus to the distance of the user
from the camera as well as the spatial resolution of the camera).
(a-d) Even small changes in face scale can effect large topological
changes on the result (note that the representation of the interest is
the vascular network, shown in black, which is only superimposed
on the images it is extracted from for the benefit of the reader).
(e-h) In contrast, the proposed vesselness response based represen-
tation encodes the certainty that a particular pixel locus is a reliable
vessel pattern, and exhibits greater resilience to scale changes.

If the local appearance is blob-like, the Hessian is approx-
imately isotropic and |λ1| ≈ |λ2|makingRA close to 1. For
a tubular structure RA should be small. On the other hand,
S ensures that there is sufficient local information content at
all: in nearly uniform regions, both eigenvalues of the cor-
responding Hessian will have small values. For a particular
scale of image analysis s, the two measures, RA and S, are
then unified into a single vesselness measure:

V(s) =

{
0 if λ2 > 0

e
−RA

2α2 × (1− e−
S

2c2 ) otherwise,
(5)

where α and c are the parameters that control the sensitivity
of the filter to RA and S. Finally, if an image is analyzed
across scales from smin to smax, the vesselness of a particu-
lar image locus can be computed as the maximal vesselness
across the range:

V0 = max
smin≤s≤smax

V(s) (6)

Vesselness at three different scales for an example ther-
mal image is illustrated in Fig. 5(a-c), and the corresponding
multi-scale result in Fig. 5(d).

Matching After the fitting of an AAM to a gallery or novel
face, all face images, or indeed the extracted vesselness sig-
natures, can be warped to a canonical frame. This warping
normalizes data with respect to pose and facial expression,
while the underlying representation ensures robustness with

(a) Vesselness V(s) at the
scale s = 3 pixels

(b) Vesselness V(s) at the
scale s = 4 pixels

(c) Vesselness V(s) at the
scale s = 5 pixels

(d) Multi-scale vesselness
V0 for 3 ≤ s ≤ 5 pixels

Figure 5: (a-c) The output of the vesselness filter at three different
scales, and (d) the corresponding integrated multi-scale result.

respect to various extrinsic factors which affect the face tem-
perature (absolute as well as relative across different parts
of the face, as discussed in ‘Multi-scale blood vessel extrac-
tion’). Since the vesselness image inherently exhibits small
shift invariance due to the smoothness of the vesselness fil-
ter response, as readily observed on an example in Fig. 5(c),
thus normalized images can be directly compared. In this
paper we adopt the simple cross-correlation coefficient as
a measure of similarity. If In1 and In2 are two normalized
images (warped vesselness signatures), their similarity ρ is
computed as:

ρ(In1,In2) = (7)∑
i,j(In1(i, j)− Īn1)(In2(i, j)− Īn2)√∑

i,j(In1(i, j)− Īn1)2 ×
∑

i,j(In2(i, j)− Īn2)2

where Īn1 and Īn2 are the mean values of the corresponding
images.

Evaluation
In this section we report our empirical evaluation of the
methods proposed in this paper. We start by describing the
data set used in our experiments, follow by an explanation
of the adopted evaluation protocol, and finish with a report
of the results and their discussion.

University of Houston data set We chose to use the Uni-
versity of Houston data set for our experiments. There are
several reasons for this choice. Firstly, this is one of the
largest data sets of thermal images of faces; it contains data
from a greater number of individuals than Equinox (Heo et
al. 2004), IRIS (Arandjelović, Hammoud, and Cipolla 2010)
or Florida State University (Srivastana and Liu 2003) col-
lections, and a greater variability in pose and expression
than those of University of Notre Dame (Chen, Flynn, and



Bowyer 2005) or the University of California/Irvine (Pan et
al. 2005). Secondly, we wanted to make our results directly
comparable to those of Buddharaju et al. whose method
bears the most resemblance to ours in spirit (but not in tech-
nical detail).

The University of Houston data set consists of a total of
7590 thermal images of 138 subjects, with a uniform num-
ber of 55 images per subject. The ethnicity, age and sex of
subjects vary across the database. With the exception of four
subjects, from whom data was collected in two sessions six
months apart, the data for a particular subject was acquired
in a single session. The exact protocol which was used to
introduce pose and expression variability in the data set was
not described by the authors (Buddharaju et al. 2007). Ex-
ample images are shown in Fig. 6. The database is available
free of charge upon request.

Figure 6: False colour thermal appearance images of a subject in
the five key poses in the University of Houston data set.

AAM training We trained the AAM using 90 manually
annotated images. Specifically, we annotated 30 images with
different facial expression for 3 different poses: approxi-
mately frontal, and at approximately ±30◦ and ±15◦ yaw
change from frontal. Additionally, we exploited the vertical
symmetry of faces by including examples synthetically gen-
erated by mirroring the manually annotated images, giving
the total of 180 images. Following the application of PCA
on the corresponding shapes and appearances, we retain the
dominant components which explain 99% of the variation.
This results in a model with 85 shape and 46 appearance
components.

Evaluation methodology We evaluated the proposed al-
gorithm in a setting in which the algorithm is trained using
only a single image in an arbitrary pose and facial expres-
sion. The querying of the algorithm using a novel face is also
performed using a single image, in a different pose and/or
facial expression. Both pose and facial expression changes
present a major challenge to the current state of the art, and
the consideration of the two in combination make our evalu-
ation protocol extremely challenging (indeed, more so than
any attempted by previous work), and, importantly, repre-
sentative of the conditions which are of interest in a wide
variety of practical applications.

Results and discussion
To assess the performance of the proposed method, we first
examined its rank-N (for N ≥ 1) recognition rate i.e. its
cumulative match characteristics. Our method was found
to exhibit perfect performance at rank-1 already, correctly
recognizing all of the subjects in the database. This result

is far superior to the previously proposed thermal minu-
tia points based approach (Buddharaju, Pavlidis, and Tsi-
amyrtzis 2006) which correctly recognizes 82.5% of the in-
dividuals at rank-1 and does not reach 100% even for rank-
20 matching, or indeed the iterative vascular network regis-
tration based method (Pavlidis and Buddharaju 2009) which
correctly recognizes 96.2% of the individuals rank-1 and
which also fails to achieve 100% even at rank-20.

The performance of the proposed method is all the more
impressive when it is considered that unlike the aforemen-
tioned previous work, we perform recognition using a sin-
gle training image only, and across pose and facial expres-
sion changes. Both Buddharaju et al., and Pavlidis and Bud-
dharaju train their algorithm using multiple images. In ad-
dition, it should be emphasized that they do not consider
varying pose – the pose of an input face is first categorized
by pose and then matched with training faces in that pose
only. In contrast, we perform training using a single image
only, truly recognizing across pose variations. A compara-
tive summary is shown in Tab. 1.

Summary and future work
In this paper we described a novel method for face recogni-
tion using thermal IR images. Our work addressed two main
challenges. These are the variations of thermal IR appear-
ance due to (i) change in head pose and expression, and (ii)
facial heat pattern emissions (e.g. affected by ambient tem-
perature or sympathetic nervous system activity). We nor-
malize pose and facial expression by generating a synthetic
frontal image of a face, following the fitting of an AAM.
Our work is the first to consider the use of AAMs on ther-
mal IR data; we show how AAM convergence problems as-
sociated with the lack of high frequency detail in thermal
images can be overcome by a pre-processing stage which
enhances such detail. To achieve robustness to changes in
facial heat pattern emissions, we propose a representation
which is not based on either absolute or relative facial tem-
perature but instead unchangeable anatomic features in the
form of a subcutaneous vascular network. We describe a
more robust vascular network extraction than that used in
the literature to date. Our approach is based on the so-called
vesselness filter. This method allows us to process the face
in multi-scale fashion and account for the confidence that a
particular image locus correspond to a vessel, thus achiev-
ing greater resilience to head pose changes, face scale and
input image resolution. The effectiveness of the proposed
algorithm was demonstrated on the largest publicly avail-
able data set, which includes large pose and facial expression
variation. In the immediate future, our future work will con-
centrate on extending the method to deal with the full range
of head pose variation (from frontal to profile), e.g. using an
ensemble of pose-specific AAMs; see (Ghiass et al. 2013a).
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