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Abstract 

In object recognition and image querying applications, complex graphs often have to be 

compared to verify the similarity between two models. Since there is always uncertainty 

while models are constructed, the nodes and the edges require fuzzy attributes to properly 

describe the scene or the object. This paper addresses the problem of matching graphs 

with fuzzy attributes (GFAs) obtained by hypothesizing volumetric primitives from 2D 

parts. The GFAs of interests have nodes with many fuzzy attributes that correspond to 

volumetric hypotheses, and edges that describe the spatial relationship between the 

hypothesized volumetric primitives. A model for representing 2D parts by volumetric 

primitives is presented. Then, a method using structural indexing adapted to GFAs is 

proposed. This inexact matching method has been designed for matching GFAs in large 

databases. 
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1. Introduction 

In object recognition and image querying applications, graphs are often used to model 

scenes or objects in the image. Since creating a model involves interpretation phases, 

there is always uncertainty. Hence realistically, graphs with fuzzy attributes (GFAs) must 
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be used. Taking our application as an example [1], the fuzzy attributes may be all the 

possible volumetric primitives that can be inferred from a part. Hence, one node (a part) 

of a graph can have many fuzzy attributes (each possible volumetric primitive and a 

fuzzy ranking value). The edges of the graph can also have many fuzzy attributes (e.g. the 

different ways parts may be connected). How can such graphs be compared? 

A significant research effort ([2],[3],[4]) has been devoted to inexact matching of 

attributed graphs. However, in general, these studies do not address the problem of 

matching inexact graphs, i.e. GFAs. An exception is the research of Christmas et al. [4]. 

Their method can match graphs where the attributes are fuzzy. However, because they 

are using probabilistic relaxation, their method needs a convergence criterion on the 

probability. A method with no convergence criterion would be more appropriate to image 

retrieval applications as the level of similarity attainable is not known a priori. In 

addition, their method is more adapted to find a similar graph, than to rank graphs based 

on a query graph. Chan and Cheung [5] have studied matching of a GFA and an 

attributed graph. Their method does not apply to matching pairs of GFAs. Perchant et al. 

[6] and Medasani et al. [7] have addressed this specific topic. Their approaches imply 

sequential matching of pairs of graphs using relaxation algorithms or genetic algorithms. 

Because only few works have been devoted to graphs with fuzzy attributes, 

matching of attributed graphs has also been studied to assess if the method used could be 

adapted to graphs with fuzzy attributes. To avoid matching numerous graphs one by one, 

two main types of approaches exist. Matching by decision trees ([8],[9]) and matching by 

indexing ([10],[11]). Decision trees require a model graph without uncertainties. Since 

our application of image querying requires fast matching, similarity rankings of many 
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graphs, and do not use reference models of objects, an approach using indexing is more 

appropriate. Besides, it is less computationally expensive [10] and well adapted to rank 

graphs. To compare graphs quickly, structural indexing is a good choice as it compares 

graphs by matching their subgraphs independently. However, structural indexing as 

defined and used in the literature cannot be directly applied to GFAs. 

In this paper, a model for representing 2D parts by volumetric primitives is presented 

and structural indexing is extended to compare GFAs. The extension of structural 

indexing to GFAs is the main contribution of this paper. This extension is not trivial as it 

is exemplified in Section 3.2, yet essential in computer vision applications. 

The paper is organized as follows. Our interest in matching GFAs is explained by 

presenting our application (named PLASTIQUE) in Section 2. Section 3 details the fuzzy 

matching problem and describes the matching method. Section 4 gives results of 

experiments aimed at validating our structural indexing method and its applicability in 

matching graphs of volumetric primitives. Section 5 concludes the paper. 

2. GFAs matching context 

The application under development, named PLASTIQUE (Parts, Links, and ASsociated 

Templates Image QUery Engine), aims at querying an image database of manufactured 

objects, which are interpretable as arrangements of simple volumetric primitives. Images 

in the database are from real scenes with one main object in the foreground that must be 

detectable in the image (see [12]).  

To query or add an image in the database, the user gives as input an example 2D 

image or a sketch of the 3D object. The image is first processed to obtain contours of 
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linked local intensity edges that are segmented to produce a map of constant curvature 

primitives (CCPs) [13]. An initial grouping of the CCPs produces the outline of the 

object [12]. The CCP map is then processed further to obtain parts using the extracted 

outline [14] [15]. These parts are labelled based on the possible volumetric primitives that 

may project onto them [15]. Spatial relationships between parts are also computed at this 

step. Finally, the constructed model is compared with models in the database. 

Parts found in an image are not matched directly. A direct matching of the parts 

would not account for viewpoint variations. For this reason, volumetric primitive 

hypotheses are inferred from the parts. Parts for a lamp are shown in Fig. 1A. The goal of 

the 3D inference is to establish which volumetric primitives, when projected in an image, 

may look like the parts found. 

Figure 1. Example of parts for a lamp and its associated graph. 

Graphs are constructed from the spatial relationships of the parts and from 

hypothesized volumetric primitives. Volumetric primitive hypothesizing is performed 

using a rule-based classifier. The rules are based on measures on the boundary and the 

shape of each part. These measures verify the convexity and the symmetry of the part, the 

type and arrangements of the constant curvature primitives (circular arc or straight line 

segment) making the boundary. When a part verifies a rule, one or more ranked 

volumetric primitive hypotheses are generated. Since parts in an image each corresponds 
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to a node of the graph under construction, each hypothesized volumetric primitive 

corresponds to a node attribute. More specifically, nodes attributes are the labels of each 

hypothesis associated with a fuzzy value (see Fig. 1B). The constructed graph will have 

nodes with one or more attributes that have values between 0 and 1 reflecting the ranking 

between the hypotheses. Edges of the graph correspond to the spatial proximity 

relationships between the parts. Edges have attributes with values between 0 and 1 that 

describe the connections between the hypothesized volumetric primitives. The edges 

attributes consist of a label that describes a connection type and a fuzzy value (see Fig. 

1B). Edges are undirected. 

3. Our approach to matching 

Our approach to match these graphs is to use structural indexing. Instead of attempting to 

compare graphs pairwise, their level of similarity is established by a voting mechanism 

and by comparing subgraph structures. 

3.1 Details on the matching problem 

The constructed graphs have nodes with 18 fuzzy attributes and edges with 4 fuzzy 

attributes. Each attribute has a fuzzy value between 0 and 1. The attributes for the nodes 

are labels identifying the 18 volumetric primitives (see [15]) that can be hypothesized 

from each part. The attributes for the edges are labels that identify how the volumetric 

primitives are connected. Since objects have parts that interconnect in complex fashions, 

nodes can form cycles, and because of processing errors, some nodes may not be 

connected. 
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These graphs must be matched in the context of an image database query engine. 

Thus, it has to be done quickly, and matching cannot rely on perfect models of objects, 

because the same processing modules model both query and database images. 

3.2 Our method introduced by an example 

The following matching example has been designed to show how the data is structured 

for matching, and the difficulties specific to indexing graphs with fuzzy attributes. 

Furthermore and more importantly, it gives an overview of our method. Specific details 

of the method appear in next section. 

In this example, a query graph (Graph Q) is to be matched with two graphs (Graph 

DB1 and DB2) in a database. These three graphs are shown in Fig. 2. Attributes of each 

node and edge are represented by a letter. Attributes are volumetric primitives or a type 

of connexion, associated to a fuzzy value.  

Figure 2. Graphs used for the example. The legend at the right identifies the attributes of the 
nodes and of the edges. 

To match graph Q with graphs DB1 and DB2, graphs DB1 and DB2 are first 

decomposed into subgraphs, named SGEs (SubGraph Entities). These SGEs are 

composed of a node, two nodes and an edge, or three nodes and two edges (Fig. 3). For 
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SGEs with more than one node, composed attributes are constructed by concatenating the 

attributes of the nodes and the edges. 

Figure 3. Graphs DB1 and DB2 are decomposed into SGEs. 

These SGEs are then inserted into an index (Fig. 4). The index has entries for each 

possible volumetric primitive and all possible combination of two volumetric primitives 

and a connexion type, and of three volumetric primitives and two connexion types. A 

SGE can appear in many index entries since, a SGE usually has more than one attribute. 

For example, this is the case for the node identified by E in graph DB1. It appears at the 

Cone and Cylinder entries. Hence, the same SGE can be indexed from different entries. 

Since nodes of graph are to be matched one-to-one, a mechanism is needed to ensure that 

a SGE is used only once for the graphs in the index. This is a difficulty that we resolve 

with our data structure. 
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Figure 4. Graphs DB1 and DB2 are inserted into an index. There are index entries for all 
possible attributes. 

When the graphs have been inserted in the database, the matching process begins. 

First of all, the query graph (Graph Q) is decomposed into SGEs (Fig. 5). 

Figure 5. Graph Q is decomposed into SGEs. 

The SGEs from Q of the three types are then sorted by increasing uncertainty. This is 

done to first match SGEs with fewer attributes and spread out values of attributes. These 

SGEs are considered less ambiguous. Matching is then done as follows. Starting with the 

SGE that have the less uncertainty, its best attribute (or composed attribute) is identified. 

Then, the index is searched to find graphs having an SGE with a matching attribute. For 

the SGE composed of node A (Fig. 6), the attribute with the best value is the cylinder. 

Both the graphs DB1 and DB2 have a SGE with a cylinder (see Fig. 4). Hence, these two 

graphs will receive a weighted vote proportional to the similarity of all the attributes of 

the matched SGEs. A method for the calculation of the weighted votes has been defined. 

Note, that graph DB1 has two SGEs (composed of single nodes identified by E and C) 
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with a none-zero cylinder attribute. The match is done with the unused SGE that have the 

highest value for the attribute (Node E). Hence a mechanism is necessary to track which 

SGEs in the index have been matched, and which one has the highest value for a given 

attribute. 

Figure 6. The SGEs of Q are used to search the index in consecutives passes, each with a 
different attribute. The graphs matched are identified along with the matching score (in bracket) 
obtained. In parenthesis, the attribute used for matching is given. 

Lastly, the matches are done in consecutives passes. First, with the attribute of the 

SGEs of Q that has the highest value (Pass 1 in Fig. 6), and then with the attribute that 

has the second highest value (Pass 2 in Fig. 6), and so on. Hence, it is necessary to know 

which SGEs of graph Q have been matched with the graphs in the index to ensure a one-

to-one correspondence. When all the passes have been completed, the total score for each 

graph in the database is computed. 
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3.3 Details of our GFAs matching method 

Specific details of the method left out in the previous overview are now presented. 

3.3.1 Decomposing to SGEs 

Graphs are decomposed into subgraph entities (SGEs). The SGEs are single nodes, 

groups of two nodes and an edge, and groups of three nodes and two edges. Recall that 

nodes have 18 attributes and edges have 4 attributes. Therefore 94625 (18 + 18*4*18 + 

18*4*18*4*18) index entries are required to cover all combinations of volumetric 

primitives and connection types. Combined attributes are used for SGEs with more than 

one node. The combined attributes are obtained by concatenating the attributes of the 

nodes and the edges for each possible combination of the hypotheses associated to nodes 

and edges for a given subgraph. For example, for the SGE AbD (Node A, edge b, and 

Node D) for graph Q in Fig. 5, four different combined attributes (Cylinder-top-to-side-

Prism 1, Cone-top-to-side-Prism 0.6, and so on) are obtained.  

3.3.2 Sorting by uncertainty 

For the query graph, SGEs are sorted by increasing uncertainty. In our case, the 

uncertainty is calculated by: 

∑
−=

FVal
FVal

yUncertaint max1                          (1) 

where FValmax is the maximum fuzzy value for any attribute of the SGE and ∑FVal is the 

sum of all the fuzzy values of the attributes of the SGE. Our measure estimates how 

ambiguous the volumetric primitive hypotheses are. This definition of uncertainty is 

different from the entropy definition used in fuzzy logic, because the fuzzy values of all 
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attributes in a SGE do not sum to 1. Our uncertainty measure is based on the fact that a 

SGE is less ambiguous when its best attribute has a fuzzy value much larger than the 

other attributes. The sorting is done to ensure that the matching order does not influence 

results. Parts of objects that have been hypothesized with less ambiguity are matched 

first.  

3.3.3 Adding SGEs to the index 

Before being added to the index (database), the SGEs can be truncated to the first n best 

attributes. The number of attributes of a SGE to include in the database depends on how 

much memory and disk space is available for the index. In our current implementation we 

have chosen to truncate to the first forty best attributes. The chosen truncation does not 

significantly affect matching results because the fuzzy values of the truncated attributes 

are usually very low. For 312 graphs, the index size is about seventeen megabytes. 

In each entry of the index, the graphs that have none-zero values for the attribute 

corresponding to the entry are listed (Fig. 4). A graph can be in an entry multiple times if 

it has the attribute corresponding to the entry for more than one SGE. To allow access to 

a SGE in the database not only from its best attributes, the SGE is inserted in the entries 

for its n best attributes. Hence, SGEs with different best attributes can be matched (see 

Fig. 6 where the SGE composed of the attribute set A is matched with a SGE having 

attribute set E). However, this requires more monitoring to ensure one-to-one 

correspondence. 
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3.3.4 Computing the matching scores 

When two SGEs are matched, the matching score has to be computed. This is done by 

adding the minimum values of each none-zero attributes. Formally, the matching score 

for two matched SGEs is: 

∑

∑

∈
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where SGEQ is the query SGE, and RVQ(i) and RVD(j) are the fuzzy values for the ith or 

jth attributes of the query and of the database SGE respectively. Symbol i ≈ j means that 

the sum is computed only for matching hypotheses in the two SGEs. The total score for 

two graphs (for all SGEs of both graphs) is given by: 
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where SGEQi and SGEDBi are the number of SGEs with i nodes in the query and in 

the index graph, respectively. MSi is a matching score for a SGE of i nodes, and a and bi 

are weighting coefficients. The four weighting coefficients are adjusted dynamically: the 

smaller the term a coefficient multiplies, the larger its adjusted value. This allows to 

emphasize the differences between the two graphs. The sum of the weighting coefficients 

is 1 and, in the current implementation, the coefficients are selected from sets of fixed 

values based on the value of each term of TS. The value for TS varies between 0 and 1, 

where 1 is a perfect match between two graphs. 



 13

3.3.5 Ensuring one-to-one correspondences 

When matching, the one-to-one correspondence between the SGEs of two graphs is 

ensured by using a proper structure for the index, and by using a special vote 

accumulator. In the index, fields are used to record which SGEs have already been 

matched (Fig. 7A). Since a SGE can be in many different entries, when it is matched, it 

has to be set as being used in all the entries. This is done by indexing and scanning the 

entries for the other attributes of the SGE. SGEs have unique identifiers.  

Figure 7. A) The structure used to insert a graph in an index entry, B) The structure used to 
record 

The vote accumulator, is a simple structure that records the number of weighted 

votes each graph obtains. It also records how many SGEs have been used for matching, 

and their identifier to avoid multiple matches with the same SGEs. 

3.3.6 Ensuring results consistency 

To ensure results consistency, matching scores are optimized. This is done by performing 

matches in consecutive passes. The first pass indexes the best attributes in each SGE of 

the query. The second pass indexes the second best attributes, and so on. This is done to 

consider cases where an object or part of an object is seen from another viewpoint, and 

where noise or errors slightly deform parts. Therefore, a partial SGE match must be 

considered. Indexing of the SGEs of the query must be done in a constant and ordered 
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fashion to ensure consistency in the values of TS. A change in the order of indexing 

change the value of TS for two matched graphs. This is why a fixed multi-pass procedure 

is used to index the database. 

For the index, SGEs (composed of node E and node C in Fig. 7) are sorted on the 

fuzzy values of the attribute to optimize matching, as this approximates sorting by 

uncertainties. Hence, the most unambiguous SGEs of both the query graph and the graph 

in the database are matched first. 

4. Experiments 

In this section, the matching performance of our method is analysed by two experiments. 

The first experiment investigates how the total matching score (TS) varies when a graph 

is matched with a deformed version of itself. The second experiment studies the ability of 

the combination of the volumetric primitive model and the matching method to group 

images of parts from six objects. It is compared to human abilities. 

4.1 Behaviour of the matching method 

This experiment has been designed to study how the total matching score for two graphs 

varies when nodes are removed, added, modified, or rearranged. A synthetic six-node 

graph has been added to a database of 312 graphs of the same average size that were 

extracted from a variety of images. Modified versions of this graph have been used as 

queries. Fig. 8 shows the results obtained for various modifications. Because of the 

formulation of TS, it varies about similarly for the different modifications, particularly for 

node addition and removal. Hence, graphs with a different node, or with one node less or 

one node more than the query are considered as similar or dissimilar to the query. This is 
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a behaviour we are looking for since TS must have a similar value if we compared graph 

A based on graph B and graph B based on graph A.  

Figure 8. Behaviour of the total matching score when a graph is compared with modified 
versions of itself. 

Experiments have shown that when each of the 312 graphs in a database is used as a 

query, the best graph match is the graph corresponding to the query graph [16]. Hence, 

although our method is an inexact matching method, it is exact enough to differentiate a 

graph from another graph, while it is flexible enough to account for some differences. 

This is shown by Fig. 9 which is from the same experiment as for Fig. 8. It shows how 

the original graph ranks for the total score (TS) for each type of modification. Fig. 9 

shows that for all types of modification, the original graph ranks first if two nodes or less 

have been modified. 
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Figure 9. Behaviour of the rank when a graph is compared with modified versions of itself. 

4.2 Grouping performance compared to human cognitive abilities 

This experiment has been designed to assess the abilities of our volumetric primitive 

model and matching method to group images of parts obtained for six objects viewed in 

195 images (about the same number of images for each object). Fig. 10 gives, for each 

object, two example images and associated parts used for this experiments. This 

experiment verifies whether the proposed 3D model and matching method allow 

PLASTIQUE to abstract viewpoint, variation of shape within an object family, and 

processing imperfections. To do so, PLASTIQUE is compared with six humans that have 

performed a similar clustering task. Among the six humans, four are researchers in the 

field.  
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Figure 10. Example of images used for the grouping performance experiment. 

The experiment with human subjects has been conducted as follows. Printouts of the 

parts of the 195 images have been given to the human subject. They have been asked to 

classify the printouts in groups they thought corresponded to the same object. It has been 

mentioned to the human subjects, that the objects could be seen from different viewpoints 

and deformed. The number of groups to form was not specified. 

The same clustering task has been performed with PLASTIQUE. Images of parts 

were grouped together if the total matching score, with an image of parts given as a 

query, was within a threshold. Then, the grouped images of parts were removed from the 

index, and another query (an image of parts still in the index) was used. This process has 

been done until the index was empty. This task has been performed with two thresholds:  

60% and 70%. That is, the matching score had to be higher than 0.6 and 0.7 (a perfect 

matching score being equal to 1). Threshold values larger than 70% give very small 

groups. Hence, these values are not of interest. Furthermore, threshold values smaller 

than 60% give poor grouping performance, as a lot of graphs are considered alike. 
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The graph of Fig. 11 shows the precision obtained for each object. The precisions 

have been computed as follows. The number of images or printouts in each group where 

an instance of a particular object was found has been summed. The number of images of 

the particular object in the database was divided by this value. This precision value 

reflects how many images or printouts of parts had to be considered so the human 

subjects or PLASTIQUE could find all the images of the particular object. The smaller 

the value, the larger the number of images considered before finding all the images of an 

object. 

Figure 11. Grouping precision of parts. 

Except for the watering can, the human subjects outperform PLASTIQUE on 

average. Considering that human subjects have a priori knowledge about the objects 

grouped in the experiment, PLASTIQUE suffers from a major handicap. PLASTIQUE 

does not have a priori models of objects. It simply compares the parts by hypothesizing 

and comparing 3D shapes and verifying their relationships. The human subjects on the 

other hand can guess the identity of objects by the area or the shape the parts are forming 

altogether. In any case, PLASTIQUE using a 70% threshold approaches the lowest 
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precision level achieved by human subjects. We believe, this part of our system can be 

improved to reduce the gap between PLASTIQUE and human subjects. For example, the 

use of global shape criteria on the area formed by all the parts may significantly increase 

the precision of PLASTIQUE. Note that human subjects had difficulty recognizing 

objects such as the stool, the coffee cup and the watering can. This is because the parts 

extracted do not always adequately represent the object in the images. 

It can be noted from Fig. 11 that some complex objects are grouped with more 

precision then simple objects, even by humans. It is the case for airplanes and coffee 

cups. This is explained by the parts obtained for these objects. For instance, the parts 

obtained for the airplanes capture more their shapes than those for the coffee cups, 

because our part segmentation algorithm is not aware of holes in objects [14] (see parts of 

stools and coffee cups in Fig. 10). Therefore, the handle is not well segmented from the 

body of the coffee cup. 

5. Conclusion 

This paper has presented a novel method for inexact matching of graphs with fuzzy 

attributes (GFAs) and a 3D model of representation for 2D parts. We first stated that 

matching GFAs is essential to many computer vision applications since interpretation 

phases are always uncertain, as it is the case for our volumetric primitive inference 

method. These uncertainties can be accounted for by using GFAs. 

Our matching method adapts structural indexing to GFAs. The use of an uncertainty 

measure and adapted data structures allows our method to handle the fuzzy nature of the 

graphs. Our method ranks graphs by similarity based on a query graph. Matching is done 
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quickly as the models are not compared sequentially. For 312 graphs, matching and 

displaying the results take less then one second on a Athlon 1.2Ghz. The complexity of 

our matching method is O(nm), where n is the number of SGEs of the query and m is the 

number of graphs in the database. This is the worst-case complexity where each graph in 

the database has at least an SGE at each row of the index. Furthermore, the size of the 

index can be adjusted to fit one needs of matching accuracy and computer memory 

utilization. For 312 objects and SGEs truncated to 40 hypotheses, the memory 

requirement is about seventeen megabytes. 

The results obtained thus far show that our method can match GFAs adequately. 

When an image in the index is queried, it ranks first for the matching score. Also, slightly 

different graphs obtain matching values that are close to the query. Grouping images of 

parts using our method gives results that are still inferior to human subjects. However, 

this experiment allowed us to gain valuable knowledge and discover new ways to 

improve our method. These improvements will be the subject of future work. 
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