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Abstract

A method is proposed to detect multi-part man-made or
natural objects in complex images. It consists in first ex-
tracting simple curves and straight lines from the edge map.
Then, a search tree is expanded by selecting and ordering
the segmented primitives on the basis of generic local and
global grouping criteria. The set of partial contours pro-
vided by the parallel search are combined into more com-
plex forms. Global scores produce a sorted list of potential
object silhouettes.

1. Introduction

Multi-part objects are everywhere, from living beings to

man-made objects, rigid or deformable, articulated or not.

They can be a person, with a head, body, two legs, and two

arms, or an airplane, with its nose, body, two wings, and

tail. Current work in detection of such objects in images is

often too specific and it lacks efficiency and noise tolerance.

A new fully deterministic and generic method is proposed

whose goal is to come closer to the capacity of humans to

detect interest regions in complex images. Multi-part ob-

jects are located by orderly selecting contour primitives on

their boundary, based on simple grouping criteria.

Powerful techniques were proposed recently to learn lo-

cal appearance features from examplar images [1]. De-

spite impressive results, they are still too limited in terms

of viewpoint-invariance and genericity. Other techniques

are based on more generic but too simple shape models [4].

Interest points bring information on image contents [9] but

are yet to be applied to generic detection. Inter-line affinity

is computed in [3]. Proximity, continuity and closing cri-

teria are defined on that basis. The extracted contours are

numerous, they may appear anywhere, and they may look

anyhow since only local, or simple global [2], criteria are

enforced.

2. Basic concept

Figure 2(b) is a constant-curvature contour primitive

(CCP) map of Figure 1(a) obtained using a custom segmen-

tation algorithm [6]. Any ordered group of CCPs from the

map is a possible detection or solution. Considering an av-

erage map of 400 CCPs, the number of possible solutions

with 30 CCPs is about 1086. Figure 1(b) is the best solu-

tion as interactively selected by a human. It is referred to

as SGT, for subjective ground truth. SGT is not know by

the algorithm and will only serve in assessing the quality of

obtained results.

(a) Image (b) SGT (c) Random

Figure 1. Basic concept

(a) 427 CCPs (b) 533 CCPs (c) 203 CCPs

Figure 2. CCP maps

Let us assume that an algorithm provides a scoring func-

tion for solutions. FGT, or formal ground truth, is the pos-

sible solution with highest score. FGT is usually not known
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either as it would require to score a nearly infinite number

of solutions. More practically, a subset of the possible so-

lutions is considered and the best one is selected. The latter

is called FGTa, an approximation of FGT. FGTa may be the

same as FGT, but this can seldom be verified in images of

typical complexity. The goal of the proposed method is to

generate, in an efficient manner, an FGTa as close as pos-

sible to SGT, for a variety of complex images of multi-part

objects. Figure 1(c) shows an example of a random solution

with 30 CCPs (each CCP has a small arrow and a number).

In the proposed method, local grouping criteria help discard

such a poor solution early on. Best retained solutions ac-

cording to global criteria are similar to SGT (see Figure 3).

3. Parallel search for partial paths

Various existing techniques learn their parameters from

training images [5]. Because of the very large number of

possible objects and images falling under the scope of our

problem, proper formal training is hardly applicable here. It

was found more appropriate to define the abstract category

of multi-part objects using a limited number of local and

global grouping criteria whose definitions were selected and

validated on the basis of a new interactive methodology [8].

Details about the selected criteria appear below.

The GraphSearch deterministic algorithm [7] is used to

build-up potential pieces of silhouettes. Due to the huge

number of possible solutions, most nodes must be removed

in order to keep the search under control. This is obtained

by rejecting paths with intersections and by applying local

grouping criteria. At the end of this procedure, a list of

nodes containing paths of fifteen CCPs is produced. This

number is typically not enough for the silhouettes of the in-

terest object to be complete. This step is followed by the

combination of nodes, as explained later. Scores are com-

puted for the obtained final paths using global criteria.

3.1. Local criteria

A new node must be validated by distance and intersec-

tion tests in order to be added to the tree. Some valid nodes

are not to be kept either. More tree nodes are removed by

the application of a set of local criteria to CCP paths. Fail-

ure to satisfy a set of conditions, in the form of a boolean

equation, results in pruning of that node. Early removal of a

node is more efficient. Hence, conditions are typically very

restrictive in the early levels, and more permissive later on.

The ten local grouping criteria are listed in Table 1. Each

has a simple formal definition. For instance, the two con-

tinuity criteria have a linear scale. A null angular differ-

ence between tangents at extreme points of the CCPs worths

100%. A 180 degrees difference worths zero. The arith-

metic mean of scores on a path is computed. The number of

parts criterion is computed using the number of concavities.

It starts by filtering angles through the silhouette by group-

ing small angle variations together. Gaps on the boundary

are filled. One is added to the result to take into consider-

ation the main body of the multi-part object. Other criteria

are also simple to compute.

Table 1. Local criteria encoding
Number Criteria

1 Continuity

2 Unused

4 Distance

8 Number of parts

16 Surface area

32 Total length

64 Opening

128 Filled continuity

256 Obtuse angles

512 Hole proportion

1024 Early closure

Tree is generated up to level fifteen. After each level

generation, the pruning process is executed. Local criteria

are expressed in the form of a boolean equation, different

for each level of the tree. Table 2 present the equations in

postfix format for the fifteen levels of the tree. First number

of each pair is the criterion code as displayed in first column

of Table 1. Second number is a fixed threshold applied.

Operators express logical combination of criteria. Another

set of similar equations is used for large images.

From level ten, elimination process changes. All nodes

are quite good because they meet tight conditions. The

slackened criteria may not be sufficient to reduce combina-

torial explosion. To help with that situation, a partial score

is computed for each node using a linear combination of

individual criteria scores. Then, only the best nodes are

kept. This elimination process arises whenever the number

of nodes at a given level exceeds 2000. It is then reduced

down to 1500.

3.2. Global criteria and scores

Associating a quality score to a node is at the heart of

the proposed method. A node is considered as either a

completed or under-construction object. The former gets

its value from the main score, the latter from the partial

score. The main score has been mainly developed by Ran-

drianarisoa et al. [8]. The ten global grouping criteria, with

their weights, are as follows: closure (5), visual balance (1),

compactness (1), number of parts (1), filled continuity (5),

gap distribution (1), object-image position (1), surface area

(5), border effect (1), hole proportion (1). Only four ele-
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Table 2. Boolean equations
Level Associated equation

1 32 10

2 1 80 4 10 * 1 65 4 2 * + 4 1 +

3 1 80 4 10 * 1 65 4 4 * + 4 2 +

4 1 75 4 10 * 1 60 4 5 * + 4 2 + 512 10 * 32 50 *

1024 2 * 64 20 *

5 1 75 4 15 * 1 60 4 6 * + 512 5 + 512 12 * 128 55

* 256 2 * 1024 3 *

6 1 70 4 15 * 1 60 4 7 * + 512 5 + 128 55 * 8 1 8 2

+ * 32 80 * 512 12 * 1024 4 *

7 1 70 4 15 * 1 60 4 8 * + 1 55 4 5 * + 256 3 * 1024

5 *

8 1 65 4 18 * 1 60 4 10 * + 128 65 * 32 100 * 512

15 * 1024 6 *

9 1 65 4 20 * 1 60 4 12 * + 128 75 * 512 15 * 32

120 * 1024 7 *

10 8 2 1 65 * 128 75 * 16 0.5 * 256 3 * 8 4 1 70 128

75 * 1 65 128 65 * 512 5 * + * 16 1 * 256 4 * +

512 15 * 4 20 * 32 150 * 1024 8 *

11 to 15 4 20 128 70 512 12 X

ments are kept in the partial score, with unit weights: num-

ber of parts, filled continuity, surface area, hole proportion.

4. Combination of level 15 nodes

The combination procedure aims at producing complete

silhouettes from partial paths. Only the best 500 best nodes

are kept, according to partial score. The minimum num-

ber of primitives to add to a node is set to 5 in experi-

ments. Thus, the number of CCPs in combinations ranges

from 20 to 30. Before accepting a tested combination, is

must be validated by intersection checks and further ap-

plication of local criteria. In order to deal with both com-

plete and incomplete objects, threshold values are permis-

sive. There are many objects with a silhouette of more than

30 CCPs. An optional step takes combinations of level fif-

teen and combines them again with level fifteen nodes. This

way, solutions may contain from 25 to 45 CCPs, which is

now enough for typical test images. After combination and

potential recombination, short CCPs initially removed are

used to complete small gaps on the silhouette of the object.

5. Results

In Figure 3, the main score of each solution appears in

parentheses. This is an interesting case with background

clutter and internal textures and markings. Many CCPs cre-

ate bridges to go around some parts, like the plane’s right

wing. Pruning those CCPs helps converging to correct an-

swers faster.

(a) SGT (1635) (b) FGTa (1642) (c) B2 (1636)

(d) W1 (1288) (e) W2 (1421) (f) W3 (1473)

Figure 3. SGT/FGT: 2 best, 3 worst

Table 3 show the position of the most similar solution

computed by the method for a variety of images. The total

number of retained solutions is in parentheses in the first

column.

Table 3. Position of the most similar solutions

Image (#End-answers) Position Similarity

Juice (53) 3 (96%) 93%

Airplane (449) 2 (100%) 89%

Water can (2) 1 (100%) 100%

Angel fish (35) 3 (94%) 99%

Stool (427) 13 (97%) 92%

Toy truck (1277) 49 (96%) 87%

Fish (157) 1 (100%) 85%

Bike (857) 21 (98%) 90%

Hand (7) 3 (71%) 97%

Man (158) 1 (100%) 93%

CCP-Usage tells how much each CCP is used in the gen-

erated solutions. In CCP-Usage maps, the darker the CCP,

the more it is used at a given step. Figure 4 shows CCP-

Usage maps for the airplane. Background and texture noise

rapidly disappear through levels of the tree and combina-

tions.

Average main score, similarity, precision, and recall are

computed for a sample of one hundred solutions (the blue

points in the graphs) at each algorithmic step. For main

score, the solutions are: a third from the best scores, a third

from the middle ones, and the last third from the worst ones.

For the other three graphs, the best solutions are retained.
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(a) Level 2 (b) Level 15 (c) End-answers

Figure 4. CCP-Usage maps

Figures 5 and 6 show airplane graphs. Similar graphs are

obtained with the other images. They are meant to show the

importance of each algorithmic step and the need for a good

sampling of solutions.
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(b) Similarity

Figure 5. Main score and similarity graphs
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(a) Precision
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(b) Recall

Figure 6. Precision and recall graphs

6. Conclusions

A simple set of explicit local and global grouping cri-

teria are combined to detect multi-part objects in complex

images. A deterministic generic detection method based on

parallel search tree expansion and pruning was developed

and applied to a variety of noisy contour primitive maps.

Input images show significant amounts of internal textures,

markings, and background structure. The method is able to

target the main subject of an image as long as it corresponds

to a multi-part object of the proper complexity. From the

obtained object silhouette, it is straightforward to extract

the corresponding region. On a Pentium 4 2.0 GHz with

1024 MB of RAM, computation times range from 25 sec-

onds for a simple image like the water can to 6.5 minutes

for a complex image like the toy truck. These numbers may

be improved by various optimizations including parallel im-

plementation.
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