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Abstract—A novel contour grouping method was recently
proposed for the difficult task of detecting and delineating
unexpected multi-part objects of unknown specific shape and
appearance in a variety of natural images. This method, in
many ways original and unique, was generally able to obtain
object-level groups of quite good quality for a variety of objects
and images. For each tested image, a number of object-level
groups are hypothesized and ranked using a generic multi-
criteria objective function. Experiments shown that object-
level groups most similar to the human ground truth usually
rank high. However, no object-level group was obtained with
some difficult images. This paper proposes three important
improvements to that original method. Firstly, fixed parameters
are replaced by adaptive parameters, improving the robustness
of the method even for the most difficult images. Secondly, a
parallel version of the method is developed to either speed-
up or scale-up the computation, making the method adaptive
to practical space and time constraints. Finally, a further
structuring of the object-level groups makes it possible to
isolate the interesting ones and determine their number. A
comparison with previous results illustrates the significance of
the improvements.

Keywords-cognitive computer vision, object detection, group-
ing, contour primitives, parallelization, clustering

I. INTRODUCTION

Cognitive computer vision methods comprise many
processing stages spanning different levels of description.
In recent years, much emphasis has been properly laid upon
making the descriptions at the object level more generic and
categorical. A novel generic object detection (GOD) method
was proposed in [1] based on a hierarchical contour grouping
framework. It was shown that a strictly over-segmented fea-
ture map is a critical requirement best satisfied by constant-
curvature contour primitives (CCP-map). Figure 1 presents
the best unexpected object detected by that method, for
a typical CCP-map, along with the human ground truth.
Object-level groups are candidate solutions to GOD. Those
candidate solutions are explored fully deterministically in
[1] in contrast with, say, genetic algorithms where the can-
didate solutions are typically both initialized and explored
randomly.

In [1], GOD was defined as delineating the objects of
intermediate-complexity shape in static images, irrespective
of their specific shape, color, texture, and imaging context.
As such, it amounts to solving the figure-ground segmenta-

(a) Image (b) CCP-map

(c) Best detection (d) Ground truth

Figure 1. Best detected object by [1]. A CCP-map is a map of contour
fragments of two generic types: straight-line segments (blue) and circular
arcs (red). The best detected object is the candidate solution, an ordered
subset of oriented CCPs from the CCP-map, with highest computed score.
For a given image and associated CCP-map, the scores of the retained
solutions are computed using a set of global shape criteria which is common
to all object types. The ground truth is a manually-selected ordered subset
of oriented CCPs from the CCP-map.

tion problem, a cognitive variant of the image segmentation
problem, with the additional specification that the figure is
an object of properly complex but unknown shape. A single
method and parameter set is defined for any object whose
structure, posture, and pose give rise to an intermediate-
complexity shape in the image. In other words, and in
contrast with most existing object detection methods in the
literature, no category-specific feature-based model is ever
defined and used. Instead, a generic set of shape criteria
and score is relied upon in searching for the best candidate
solutions.

As explained in [1], the rationale behind such a contrarian
approach is very simple. In completely out-of-context situ-
ations where no specific object type is expected, it would
not be practical to search for all possible types of objects in
an image, either sequentially or simultaneously. The idea is
to search instead for a more abstract category encompassing
as many object types as possible in order to first detect any
interesting, here defined as shape-salient, object.

A completely out-of-context situation is certainly an ex-



treme situation. However, partially out-of-context situations
are the norm for both humans and machines. In that respect,
mainstream object detection methods take a quite extreme
stance in that context is in turn restricted to a single object
type which is searched for independently.

In [1], each grouping stage is formalized as a combi-
natorial multi-criteria optimization problem solved by sys-
tematically considering all possible groups. Using such an
approach, a common problem arising at each processing
level consists in ranking groups in order to identify the best
ones. More generally, one needs to structure groups in order
to isolate the interesting ones and determine their number.

This paper proposes using a clustering method to structure
the object-level groups of [1] on the basis of their similarity
and quality. It will be shown that, having adopted the
hierarchical grouping framework, this structuring is obtained
efficiently and effectively. Still, in order to benefit most from
it, a sufficient number of groups of good quality must be
obtained. Even though the set of groups was shown in [1]
to be of good quality for a number of images of varying
complexity, the most difficult images suffered from using
fixed computational resources and parameters. A second
contribution of this paper is a more efficient and robust
computation of the groups.

II. RELATED WORK

Evidence has been published that perceptual grouping of
contour primitives is key to image understanding [2]. How-
ever, few results are known regarding high-level grouping
for GOD [3]. Contour grouping methods for object parts
assume simple shapes [4]. As such, it becomes difficult to
succesfully filter and structure the obtained groups towards
GOD. A few recent generic contour extraction methods ap-
propriately target unknown salient objects in natural images
[5]. Closer to the approach in [1], those global optimization
methods also detect and localize salient objects based on
their shape in the image. Similarly to [1], such methods are
generic as they do not make any assumption related to the
object types. However, as discussed in [1], they typically
choose to severely restrict the terms of their objective
function in order to come up with a closed-form solution.

It was shown in [1] that such an approach is not robust
in that it may easily produce a single best solution which is
quite poor in terms of precision and recall of the ground truth
features. With such an approach, in order to obtain a second-
best closed-form solution, the problem set must be changed,
e.g. by removing some image features. Typically, previous
methods propose to remove all features from the best closed-
form solution, which addresses the case of multiple salient
objects in an image but not the problem of an erroneous best
solution.

Instead, the method proposed in [1] restricts its multiple
optimization criteria only in number but not in format,

allowing higher-level criteria out of the scope of the closed-
form methods. Besides, the number of retained candidate
solutions is only limited by computational considerations,
e.g. time and space limits. Retained solutions, which may
overlap to any degree, are all ranked according to a single set
of unrestricted criteria defining all intermediate-complexity
shapes.

By explicitely considering and retaining partly-
overlapping solutions (e.g. sharing a subset of contour
primitives), the method in [1] offers a significant advantage
over closed-form optimization methods. That is, alternative
solutions may be structured and further analyzed, either
automatically or interactively, in order to address more
difficult contexts such as noisy feature maps, multiple
interesting objects in an image, partly-occluded objects, etc.

In [1], the number of retained solutions is typically from
a few to over one thousand. Properly adapting this number
to the available computational resources and constraints was
not attempted and would actually have been quite difficult
given the number of parameters in the method. Besides, no
further structuring of the retained solutions was attempted.

In this paper, we propose improvements to the method
in [1] in order to better exploit its fundamental advantages.
As a favorable experimental comparison with state-of-the-
art global optimization methods was already performed in
[1], this paper mostly presents and experimentally demon-
strates improvements to [1] in terms of robustness, efficient
adaptivity to computational resources, and structuring of the
retained solutions. Specifically, it will be shown that ten or
less significant solutions may be efficiently obtained for a
superset of the test cases in [1].

A very interesting and related method for figure-ground
segmentation was recently proposed in [6]. As in [1], hy-
potheses are made and ranked without prior knowledge of
the properties of individual object classes or types. While
sharing many interesting similarities with the approach in-
troduced in [1], this new method differs with respect to a
number of important design choices. Besides being based on
region hypotheses instead of contours, an issue discussed in
[1], the new method does not attempt to define the concept
of interesting object as precisely as in [1]. For this reason, its
scope and experimental evaluation methodology are different
from [1], an object being defined mostly by its appearance
in [6] whereas objects of interest in [1] are defined by their
having an intermediate-complexity shape. Besides, results
in [6] report only the best hypothesis for each ground-
truth object, irrespective of its rank in the pool of region
segments, whereas [1] compares very precisely the ordered
set of contour segments in the best-ranked hypothesis with
the corresponding ground-truth set.

Finally, a number of successful model-based object de-
tection methods have also been proposed recently [7], [8].
Since they rely on matching partial or complete object
contour templates, they are not properly addressing the GOD



problem, defined as a figure-ground segmentation in [1] and
[6]. Still, they need to address the structuring issue since
possible matches are likely to overlap. However, that issue
has yet to be given its due attention in model-based methods.

III. OBJECT-LEVEL GROUPS

The original method in [1] generates multiple object-level
grouping hypotheses from each input CCP-map, building 1-
CCP groups and growing them gradually, one CCP at a time
in the first 15 steps and by merging 15-CCP groups in the
following two steps. At the nth step of the method, for n
between 1 and 15, all possible n-CCP groups from the CCP-
map are considered but only those satisfying a number of
grouping constraints specific to that step are retained. The
pruning constraints at each step are expressed as a specific
boolean combination of a subset of ten intermediate-level
contour grouping criteria with limiting parameters. In cases
where too many groups are retained at a given step, the set
is ranked and pruned to a fixed maximum size according to
a partial score combining a subset of the intermediate-level
contour grouping criteria.

The values for the limiting parameters in the boolean
expressions are fixed and specific to each step and grouping
criterion. Generic constraints are also added at each step in
order to enforce non-intersecting boundaries and maximal-
size gaps. Hence, the large number of parameters influencing
both the quality and quantity of retained object-level groups.
Despite this large parametric space, very good results were
reported in [1] for a variety of images and objects.

It is to be noted that a n-CCP group is actually an ordered
(numbers in Figure 2) list of oriented CCPs, hence one of
two possible directions (arrows in Figure 2) is assigned to
each CCP in the group. In practice, the number of possible
groups is exponential and most of them need to be removed
at each step. After 15 steps, a limited number of 15-CCP
groups are obtained.

Usually, 15-CCP groups cover at best only a part of the
object boundary. One or two attempts at merging pairs of
partly-overlapping 15-CCP groups follow. Finally, a single
instance is kept for each set of mostly identical groups and
it is completed using small still-unused CCPs from the input
map. Overall, there is a total of 19 steps needed to typically
retain from a only a few up to over a thousand final groups
from an exponentionally-large set of possible groups.

As mentionned earlier, the obtained object-level groups
are ranked automatically using a multi-criteria main scoring
function. In [1], the method was shown to produce high-
ranking high-quality object-level groups for diverse multi-
part objects. Figure 2 shows two example boundaries (one
totally on the object and one partly in the background)
obtained using the CCP-map in Figure 1(b) after grouping
steps number 7, 10, 15, and 17 (second merge), along
with the best and the worst retained completed object-level
groups.
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Figure 2. CCP groups after different grouping steps. Groups (a), (c), (e),
and (g) are on the object boundary. Groups (b), (d), (f), and (h) are under-
segmented, partly overlapping the background. Group (i) is the top-ranked
retained final group. Group (j) is the bottom-ranked retained final group.
Up to a few thousands groups may be retained at each step.

A. Robustness

Having a large number of fixed parameters is problematic
for at least two reasons. Firstly, it makes it difficult to
properly adjust the parameters in order to obtain the best
possible results within given space and time limits. Secondly,
fixed parameters may result in no group being retained at a
given grouping step for the most difficult images. In such
a case, no object-level group is obtained by the method, as
reported in [1].

In order to extend the applicability of the method, one
could attempt to change the constraints or their parameters
in the first 15 steps. Given the scope of the method and



the dimensionality of the problem, even a machine learning
approach to parameter selection appears difficult. Another
possibily could be to automatically adapt the parameters
to each single test case, making sure the retained groups
at each step are obtained within acceptable time limits,
their number being within acceptable space limits. Again, it
appears difficult to obtain such a result with a deterministic
method. A different and much simpler adaptive approach is
proposed here in which the constraints are actually removed.

More precisely, the partial score optionally used to limit
the number of retained groups at each step is now computed
as each possible group is considered in steps 2-10 in order
to always keep a limited-size list of the best groups. The
minimum CCP length in step 1 is now made relative to the
image dimensions. Intersection and neighborhood generic
constraints are kept at each step, the latter being generalized
to either adapt to image dimensions or ensure a minimum
number of neighbors, irrespective of the gap size. For steps
11-15, an iterative pruning scheme is adopted based on
ranking and pruning the groups according, in turn, to each of
the four criteria used as constraints in [1]. A fixed number of
groups are kept at each step. A similar but simpler approach
is taken for the two merging steps in which fixed thresholds
are replaced by an integrated score.

Overall, those changes to the method in [1] makes it
adaptive to the image size and content, ensuring a compara-
ble number of object-level groups for any input CCP-map.
Besides, as explained in the following subsection, it makes
it possible to adapt the exploration of groups to the available
computational resources.

Figure 3 shows the best object-level group obtained with
the new adaptive method on two CCP-maps. For the first
CCP-map, the adaptive method produces a visually better
result. For the second CCP-map, the obtained result is quite
good whereas the method described in [1] did not find any
object-level group for that map.

Figure 4 presents additional results for CCP-maps ob-
tained from [1] and computed from ETHZ and BSD standard
image datasets. The first two results using CCP-maps from
[1] are very good, the plane showing a significant improve-
ment over the result of the original method (Figure 1(c)).
The four ETHZ swan results compare favorably with state-
of-the-art model-based detections. The last two results from
BSD are comparable to state-of-the-art contour extraction
[5], despite using CCP-maps built from a simpler Canny
edge detector.

B. Efficiency

The improved method just described offers many oppor-
tunities for parallellization. For instance, 1-CCP groups may
be evenly divided into M subsets, each one computing steps
2-15 independently for its groups. Another finer-grained
parallelization may instead be applied at each step. For steps
2-10, each group expansion may be evaluated independently.

(a) (b) Fixed (c) Adaptive

(d) (e) Adaptive

Figure 3. Improved best group. CCP-map (a) is a difficult one since it
contains a large number of distracting CCPs. The adaptive method produces
an improved result. CCP-map (d) was actually too difficult for the original
method. The adaptive method produces a visually good result.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Additional results. The adaptive method produces visually good
results, comparable to or better than state-of-the-art methods.



For steps 11-15, each of the four parameters needs to
be evaluated sequentially but, for each evaluation, each
group may be evaluated independently. It was empirically
determined that division into subsets for steps 2-10 and fine-
grained parallelization for steps 11-15 produce good results,
as reported below. In steps 16 and 17, possible pairs of 15-
CCP groups are divided into M subsets evaluated in parallel.

Using a parallel method, one may obtain either the
same groups faster, keeping all parameters and computations
unchanged, or better groups within the same time limits,
exploring a larger set of possible groups. Both speed-up and
scale-up may be useful in practice.

Using the first ten CCP-maps from [1] (reproduced in
Figure 5), the average speed-up obtained is more that 2 when
run on a quad-core PC (an average computation time of
about 30 seconds per image). The speed-up is with respect
to a new optimized sequential implementation of the method
in [1] in which pairwise distances between CCP extremities
are pre-computed in parallel. Figure 6 shows that scaling
the exploration of groups up or down changes the quality of
the best object-level group for images of typical complexity.
Quantitatively, it was observed that the F-measure varies
proportionally to the scaling.

(a) scaled-down (b) scaled-up

(c) scaled-down (d) scaled-up

Figure 6. Adaptation to available computational resources. With the
new adaptive method, scaling the computation up or down is easy. The
quality of the best object-level group improves as the number of retained
groups is increased at each step. This number is increased (reduced) as the
computation is scaled up (down).

IV. STRUCTURING METHOD

After the final step in [1], the number of groups may
range from only a few to over a thousand. However, many
hypotheses may be similar and, as explained in [6], filtering
redundant hypotheses is important in order to diversify
the best-ranked retained hypotheses. It is proposed here

to structure the object-level groups using a hierarchical
clustering method. A nearest-neighbor rule is used and a
simple pairwise similarity is computed on the ordered set
of oriented CCPs forming each group. A prototype group is
then selected from each cluster.

A. Pairwise similarity

Each object-level group is made up of an ordered list of
oriented CCPs. Two groups made up of the same oriented
CCPs in the same (or reverse) order are maximally similar.
Non-parametric statistical measures such as Spearman’s rank
correlation coefficient allow comparison of ordered lists of
the same length but they do not consider binary parameters,
e.g. orientation, for the list items. Actually, tens of similarity
measures have been proposed for ranked lists of the same
items [9]. On the other hand, recent specialized methods e.g.
for computing similarity of ordered gene lists are complex
and domain-specific.

Here, the two groups to be compared are cyclic ranked list
in that the starting CCP is arbitrary on the closed contour.
Besides, a missing or spurious CCP in the second group,
a change of position, or a change of orientation should
decrease the pairwise similarity. Given these specific require-
ments, a simple and efficient definition of the similarity of
a pair of groups a and b is adopted. It corresponds to the
proportion, relative to the size of the largest group, of the
size of the largest subset of consecutive CCPs in one group
that appear in the same order and orientation in the second
group. Given that only the largest properly ordered and
oriented overlapping subgroup is considered, the obtained
similarities are likely to decrease rapidly as the two groups
start differing.

B. Hierarchical clustering

Clusters are obtained at leaf nodes of a divisive binary
tree using algorithm 1. Starting with a root node containing
all object-level groups, each node is partitioned in two
descending nodes until all pairwise similarities of groups
within it are over a fixed threshold. The two groups with
the minimum pairwise similarity become the representatives
of the new nodes and the other groups are assigned to the
node with the highest similarity with its representative.

Figure 7 presents normalized CCP maps linearly combin-
ing the object-level groups at each node of the clustering
tree. The minimum pairwise similarity within a leaf cluster
was set to θ = 0.6. The smaller that value, the smaller
the size of the clustering tree and the smaller the number
of leaf nodes and prototype groups. In a normalized CCP
map, each CCP is displayed using a grey level proportional
to the number of times it appears in different maps, here
corresponding to the different groups in a cluster at a given
node. Leaf clusters have more uniform normalized CCP-
maps than non-leaf clusters. Normalized CCP-maps of leaf
clusters are of diverse shapes. Interestingly, groups in each



(a) Plane (b) Stool (c) Water (d) Man (e) Toy

(f) Juice (g) Bike (h) Hand (i) Fish (j) Angel

Figure 5. Images and CCP-maps reproduced from [1].

Algorithm 1 Hierarchical clustering
Initialize root node N with all groups
OPEN ⇐ {N}
while OPEN is not empty do

C ⇐ OPEN .first
OPEN .pull front
ms ⇐ minimum pairwise similarity in C
if ms ≥ θ then

continue while
end if
a, b ⇐ groups with minimum pairwise similarity in C
N1 ⇐ groups closer to a
N2 ⇐ groups closer to b
OPEN ⇐ { OPEN N1 N2 }

end while

leaf cluster were observed to be also structured according
to their main score ranks and their similarity with ground
truth.

Figure 8 presents all object-level groups in the leaf cluster
at node 4. Groups are in descending order according to main
score. Clustered groups have similar shapes, as expected.

C. Prototype selection

Apart from its proposed use in structuring multiple group-
ing hypotheses, clustering is also a popular framework
to organize training instances in k-nearest-neighbor (kNN)
classification. In such a case, selection of a good prototype
for each cluster is an important issue [10]. In order to
be robust to possible outliers, it is proposed to define the
prototype as the group with best main score, irrespective of
the pairwise similarities. In this way, prototype selection is
made specific to the problem at hand, while still benefiting
from the generic structuring of groups into clusters. A
similar choice was made in [6].

Figure 9 presents the prototypes in different leaf clusters
sorted with the best ones first. Nodes are numbered as in
Figure 7. Prototypes are of diverse intermediate-complexity
shapes, as expected.

N=19

N=12 N=7 N=11

N=17

N=6

N=36

#1

#2 #3

#4 #6 #7#5

Figure 7. Tree obtained by hierarchical clustering using CCP-map in
Figure 5(e). Nodes are represented by normalized CCP-maps. Nodes are
numbered from 1 according to a breadth-first traversal of the binary tree.
One may notice the diversity of shapes in the leaf clusters.
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Figure 8. Leaf cluster groups. All object-level groups in leaf cluster #4
are displayed. One may notice the similarity of shapes in the leaf cluster.
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Figure 9. Prototypes of leaf clusters. Prototypes are ordered with
decreasing main score. One may notice the similarity of prototypes with
the normalized maps of leaf clusters.

V. RESULTS

Using the same ten CCP-maps as before (Figure 5),
the average precision and recall of the best object-level
groups are 80% and 83%, respectively, being absolutely
improved by 1% and 6%, respectively, with respect to
the original method in [1]. The scaling of the adaptive
method was chosen in order to keep the average computation
time unchanged. The worst recall (for CCP-map (i) in
Figure 5) went from 39% to 67%, for an 8% decrease
in precision. Table I(a) shows quantitative results for each
image. Importantly, precision and recall is very strict here,
being computed using CCP labels i.e. imposing perfect cor-
respondance and ordering of contour primitives. In contrast,
a benchmark evaluation standard based on partial overlap
of enclosed image regions or bounding-boxes is used in the
VOC Challenge and in [6]. As an indication, the computed
precision and recall of the object-level group in Figure 1(c)
are 81% and 61%, respectively. The improvement on images
that already produced quite good results validates that the
added robustness, efficiency, and flexibility of the new
method is not obtained at the expense of poorer results.

In another experiment, the maximum number of retained
groups and the neighborhood extent were adapted to the
available computation time. In practice, a speed-up factor is
chosen according to the available scale-up i.e. architecture.
For the ten CCP-maps, the average absolute difference in
F-measure for a speed-up factor of 1/17 (computation is 17
times longer) is 2%. Conversely, for a speed-up factor of 7
(computation is 7 times shorter), the difference is -5%.

The mentioned ten images were selected in [1] as rep-
resentative of major difficulties faced by object detection
methods, which was made clear in the experimental eval-
uation section of [1]. Other experiments were made on
two additional datasets, each of ten images. In both cases,
the parameters optimized for the first ten images were left
unchanged. The first additional dataset (quantitative results
shown in Table I(b)) gave a mean difference of -1% and
4% in precision and recall, respectively as compared with
[1], showing the generalization capability of the adaptive
method. The second additional dataset comprised ten diffi-
cult images that produced no results at all in [1]; good to
excellent detections were obtained with half of them.

Detailed results in Figure 10 for a selection of images

from those three datasets demonstrate the scope of the
method and the quality of its results. One may notice the
effectiveness of the clustering and prototype selection steps.

VI. CONCLUSION

Three significant improvements were proposed to a recent
generic object detection method, making it adaptive to space
and time limits, while being more robust and efficient.
A comparison with previous results illustrated the new
capabilities. Future experiments are planned to assess the
possible benefits of a highly scaled-up computation on a
high-performance cluster. It is expected that more complex
contexts could then be in the scope of the method, such as
partly-occluded objects, multiple objects, and even moving
objects in image sequences.
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Table I
COMPARISON OF ADAPTIVE AND FIXED (ORIGINAL) METHODS. DATASET 1 IS USED BY THE ADAPTIVE METHOD TO OPTIMIZE ITS PARAMETERS.

DATASET 2 KEEPS THE PARAMETERS UNCHANGED.

(a) Dataset 1
Image Precision Recall Similarity

— Ad. [1] Ad. [1] Ad. [1]
Plane 0.738 0.809 0.726 0.613 0.823 0.691
Stool 0.900 0.903 0.973 1.000 0.967 0.947
Water 0.958 0.960 0.958 1.000 0.983 0.938
Man 0.818 0.824 0.750 0.778 0.795 0.795
Toy 0.900 0.619 0.735 0.531 0.796 0.606

Juice 0.688 0.535 0.880 0.920 0.854 0.794
Bike 0.936 0.936 0.746 0.746 0.865 0.857
Hand 0.852 0.857 0.958 1.000 0.921 0.866
Fish 0.527 0.607 0.674 0.395 0.714 0.534

Angel 0.632 0.769 0.923 0.769 0.847 0.767
Average 0.795 0.782 0.832 0.775 0.856 0.779

(b) Dataset 2
Image Precision Recall Similarity

— Ad. [1] Ad. [1] Ad. [1]
Plane03 0,550 0,457 0,647 0,471 0,635 0,490
Plane13 0,556 0,586 0,541 0,459 0,662 0,531
Plane21 0,893 0,880 0,862 0,759 0,837 0,741
Compass 0,826 0,760 0,633 0,633 0,789 0,808
Stool 2 0,781 0,697 0,833 0,767 0,791 0,674
Lamp 0,897 0,931 0,839 0,871 0,858 0,833
Chair 0,893 0,720 0,714 0,514 0,804 0,537
Hat 0,391 0,625 0,529 0,588 0,758 0,729

Angel 2 0,727 0,739 0,865 0,919 0,890 0,859
Cup 0,481 0,684 0,929 0,929 0,786 0,893

Average 0,700 0,708 0,739 0,691 0,781 0,710
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Figure 10. Detailed results. Each column presents, from top to bottom: the input image, the computed CCP-Map, the object-level ground-truth group,
the best object-level group detected, a normalized map of all retained object-level groups, and a normalized map of object-level prototype groups selected
from the leaf clusters. Images (a) - (e) are from the dataset used in [1] (see Figure 5), images (f) - (h) are from the first additional dataset (see Table I(b)),
and images (i) - (j) are from the ETHZ dataset (with ground truth left undefined).


