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Abstract 

This paper presents one significant aspect of a project aimed at the design of an image database 

query engine, where the images are searched at the 3D object-level. This approach is a novelty 

since image databases are usually searched by comparing colours, textures and 2D shapes of 

regions in the images. The main aspect and contribution of this paper is a new method for object 

part segmentation, from constant curvature contour primitives, that is suited to process images of 

objects in real scenes. It groups constant curvature primitives using intermediate-level geometric 

relationships and object outline information. A detailed description of the method is presented 

along with validating experiments. 

Keywords: Part segmentation; Perceptual grouping; Image query; Volumetric primitives; Geons;   

1. Introduction 

The comparison of objects in 2D images using efficient and reliable algorithms is a problem that 

remains unresolved in computer vision. A similar problem is the identification of an object in an 

image. A value of similarity is obtained as the results of the comparison of two objects, whereas 

one or more identifiers are produced when an object is identified. The images are processed with 

common algorithms, but the results obtained are interpreted differently. The resolution of these 

two problems is of high interest as it permits the development of autonomous robots and efficient 

image database query engines. 

Our work aims precisely at developing robust algorithms to model and compare 3D objects in 

2D images in the context of an image database query engine. In this paper, one specific aspect is 

presented. It is the segmentation of a 3D object into 2D parts. In the context of this work, 2D 
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parts are defined as regions delimited by groups of circular arcs and straight line segments 

(constant curvature primitives), which can later on be interpreted as the projections in the plan of 

simple volumetric primitives, likes cylinders and prisms.  

The main contributions of this paper are the detection of parts by grouping two constant 

curvature primitives (CCPs) and the uses of the outline to reduce the number of possible groups. 

We will show that our approach is suited to process 3D objects in 2D images of real scenes by 

several validating experiments. 

The paper is structured as followed. Section 2 gives an overview of the application. Section 3 

provides a review of the literature and our basic strategy to part segmentation. Section 4 and 5 

present in detail our method. Section 6 gives an analysis of results obtained with our method. 

Section 7 concludes the paper. 

2. Overview of the envisioned application 

The application under development aims at querying an image database of manufactured objects, 

which are arrangements of simple volumetric primitives. Images in the database are from real 

scenes with an object in the foreground. The only other constraint is that the object must be 

detectable in the image (see [1]).  

Figure 1 shows an overview of the image database query engine under development. The shaded 

region represents the four algorithmic steps required to add an image or query the database. The 

database is composed of various 2D images of 3D objects, and their associated models. To query 

or add an image to the database, the user gives as input an example 2D image or a sketch of the 

Figure 1 
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3D object. The image is first processed to obtain its constant curvature primitives (CCPs) map 

and the outline of the object (Object detection). This CCPs map is then processed to obtain parts 

using the outline (Part segmentation). These parts are labelled based on the possible volumetric 

primitives that may project onto them (Object interpretation). Parts are interpreted by volumetric 

primitives since the aspect of a projected 3D object may change significantly for different 

viewpoints (see Figure 11). At the object interpretation step, the spatial relationships between 

parts are also computed. Finally, the constructed model is compared with the models in the 

database (Model matching). If similar models are in the database, the corresponding 2D images 

are shown to the user. If not, the newly built model and its corresponding image may be added to 

the database.  

Therefore, the general goal of the image database query engine is to show to the user the images 

in the database which resemble the most the query image, and at the same time to limit the 

number of false positives. The obtained images will be classified from the most to the least 

similar image based on the score obtained during the matching step. The topic of this paper is 

step 2, part segmentation. The following section reviews the literature and describes our 

approach to this problem.  

3. Possible approaches to part segmentation 

Five types of approaches have been proposed to solve the part segmentation problem. They are 

the approaches based on: i) symmetry axes of the parts of the object, ii) convexity points on the 

boundary of the object, iii) minimum description length criterion, iv) primitives cycles, and v) 

perceptual grouping and geometric relationships. We review them briefly and explain why none 

is appropriate as such for our problem. 
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3.1. Approaches based on symmetry axes 

Several works ([2],[3],[4],[5]) have used symmetry axes to segment objects into parts. After edge 

detection, the object symmetry axes are detected. The axes are usually computed by taking the 

midpoint between two black pixels, and by linking these midpoints. The result is a collection of 

axes in which some are relevant for part segmentation and some are not. Rules are then used to 

select the axes that possibly describe parts. The boundary that has given rise to a selected axis 

corresponds to the boundary of a part. 

These approaches work well for objects that are lightly textured. However, in our application, 

heavily textured object may be processed. For heavily textured objects, these approaches give 

rise to a very large collection of axes (the textures give rise to axes) in which it is very difficult to 

select the relevant ones. Hence, for our application, these approaches are not appropriate. 

3.2. Approaches based on convexity points 

These approaches are illustrated by the work of [6]. The basic strategy in these approaches is to 

segment the object based on the dominant convexity points on its boundary. After edge 

detection, the boundary is first scanned to locate dominant convexity points. Then, these 

convexity points are paired to find the joints between the parts. Once the joints are found, the 

parts are defined by the boundary lying between joints. 

These approaches are not suited for our application, because some convexity points may be 

absent due to gaps between edges. In addition, objects, which can self-occlude in some 

viewpoints, cannot be segmented invariably into the same group of parts. Some convexity points 

can appear and disappear according to the viewpoint and change the segmentation.    
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3.3. Approaches based on a minimum descr iption length cr iter ion 

These approaches group contour boundaries based on a minimum description length (MDL) 

criterion. In the work of [7], ellipsoid parts are extracted. The MDL criterion ensures that the 

ellipsoids fit in the best possible way the data (pixels). The length of the description may be 

calculated in the following way for an edges image. The associated length is zero for parts of the 

ellipsoid that are on boundary pixels, and for parts of the ellipsoid that do not fit any boundary 

pixel, the length is increased by one for every pixel that does no fit. Therefore, the smaller the 

description length, the better the fit. In these approaches, the MDL criterion is optimized globally 

for the entire image to extract the best combination of parts. 

The parts obtained with these approaches may not be interpreted as simple volumetric primitives, 

since a single ellipsoid may fit more then one projection of volumetric primitives. Hence, objects 

are harder to interpret and compare. In addition, ellipsoids may not fit concave parts. Therefore, 

these approaches lack the generality needed in our application.  

3.4. Approaches based on pr imitives cycles 

These approaches attempt to build closed cycles of primitives (example: circular arcs or straight 

line segments). The cycles are constructed in such a way that they correspond to parts. Rules are 

defined for validating the addition of a new primitive in the cycle. The work of [8] implements 

this approach. A graph of the primitives (the nodes) and of the junctions (the arcs) of the object 

is constructed based on proximity. From this graph, all the possible closed cycles are found, and 

those that do not contain other cycles are considered as parts. The work of Jacobs [9] differs by 

the use of a convexity criterion and a saliency criterion on the cycles. 
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These approaches are not suited for our application, since in images of real scenes, the junctions 

are not always detectable and the parts are not always convex. 

3.5. Approaches based on perceptual grouping and geometr ic relationships 

These last approaches group constant curvature primitives (CCPs) based on geometric 

relationships. They are inspired by works on perceptual grouping ([10],[11]). The spatial 

arrangements of the CCPs are studied, and those that fit some criteria based on geometric 

relationships are considered as parts. Examples are PARVO [12] and the system developed by 

Dickinson [13]. PARVO uses symmetry and junctions to group CCPs into parts. Junctions give 

the clues about the structure of the object and ensure robust grouping. Dickinson system’s groups 

CCPs in many stages. First, arrangements of CCPs are searched. Then, these arrangements of 

CCPs are grouped into faces, the faces are grouped into aspects, and the aspects are grouped into 

geons. Probabilities are associated to each hypothesis. 

The systems that implement this approach, uses either junctions, or catalogue of arrangements of 

CCPs. Since, images of real scene are processed in our application, junctions are hard to detect. 

Hence, they cannot be used in the same fashion as in PARVO. Furthermore, catalogue of 

arrangements of CCPs are not flexible enough for our application since some arrangements of 

CCPs that are not present in the catalogue may exist in images.  

Although the existing implementations of these approaches are not suited for our application, the 

principle behind them can be adapted to fit its needs. The next section explains why, and how 

this can be done.   
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4. Pr inciple of our  method 

 As mentioned previously, our application implies the processing of images of objects in real 

scenes. Grouping constant curvature primitives (CCPs) by geometric relationships is valid in this 

context, if the CCPs are grouped in such a way that the influence of texture and noise on the 

results is reduced. This can be done using structural information about the object. A number of 

high-level features convey structural information. In PARVO, the junctions are used as this high-

level feature. However, junctions are hard to detect in images of real scenes. Catalogues of 

arrangements of CCPs could be used to obtain groups that respect given structures. However, 

this is too restrictive because it limits the type of arrangements of CCPs that can be processed. A 

feature easier to detect, more convenient and not restrictive should be used. For this purpose, the 

outline of the object has been chosen. Although it conveys less information than junctions do, it 

does not restrict the types of arrangements of CCPs that can be processed, and it simplicity 

allows a user to make a query by sketching only the outline of an object, or of its constitutive 

parts. 

The principle of our method for part segmentation is to group two CCPs with a criterion based 

on intermediate-level geometric relationships and with the outline of the object to account for its 

structure. Subsequently, the complete boundary of the part is detected by making cycles with 

object CCPs to link the two grouped CCPs. The shape of the parts extracted is only limited by 

the structure of the object (obtained via the outline) and by the geometric relationships between 

the two CCPs grouped. Note that the outline is extracted using the method of [14] and the CCPs 

are extracted using MAGNO ([15]). 
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This method has the advantage of being able to extract any type of parts that is made of two 

compatible CCPs (as defined by the geometric relationship based criterion), along with their 

detailed shape. Therefore, the parts extracted may be non-convex. Furthermore, since the parts 

are made of two main compatible CCPs, they can be easily interpreted as simple volumetric 

primitives. Using the definition of generalized cylinders, the two compatible CCPs are the 

projected envelope of the region swept by the section, and the CCPs used to link the two 

compatible CCPs describe the projected section. In addition, the use of the outline reduces the 

complexity of the search for two compatible CCPs. 

5. Details of par t segmentation process 

Let us now detail the segmentation process. The solution space of our part segmentation method 

is the set of all the possible CCPs pairs. The goal of our method is to select a subset of pairs of 

CCPs among these, which correspond to parts. This is done using a criterion that increases the 

probability that the selected pairs of CCPs correspond to the projected envelopes of the simple 

volumetric primitives composing the object. Once two compatible CCPs of a part are found and 

validated, the boundary of the part is completed by adding the CCPs that correspond to the 

section.  

Since not all parts are on the outline of the object, part segmentation is realized in two stages. 

Stage 1 detects part with the help of the outline and intermediate-level geometric relationships. 

The parts are detected with the highest confidence at this stage. Stage 2 relies solely on 

intermediate-level geometric relationships. Part segmentation consider for grouping only CCPs 

that are on the outline, or inside the outline. The geometric relationships based criterion used for 

grouping is described in the next section, and then the two stages are detailed.  
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5.1. Geometr ic relationships based cr iter ion 

A unique criterion based on geometric relationships (CBGR) is used for both stages. This 

grouping criterion is based on five intermediate-level geometric relationships between a pair of 

constant curvature primitives (CCPs). They are the parallelism (P), the distance between the 

CCPs (D), the similitude in length (SL), the similitude in type (ST) and the overlap (O). These 

relationships are considered as intermediate-level, because they are computed at the CCP level. 

The grouping criterion is formulated as follows: 

5

P D SL ST O
CBGR

+ + + +=                                               (EQ .1) 

The next subsections show how the five intermediate-level geometric relationships are defined. 

5.1.1. Parallelism (P) 

Parallelism is in general a non-accidental property of the projected envelopes of simple 

volumetric primitives. This geometric relationship is the component of the grouping criterion 

used to support the grouping of two CCPs that are as close as possible of being parallel. The 

parallelism is computed in a similar fashion for both straight line segments and circular arcs. 

Hence, the parallelism is calculated by approximating the circular arcs by straight line segments 

passing by their endpoints. Defining the straight line segments as vectors pointing in an arbitrary 

chosen direction, parallelism is given by, 

.P a b=
��

                                                                (EQ. 2) 

where a
�

 and b
�

are two vectors representing straight line segments. The values obtained for P are 

between 0 and 1. 
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5.1.2. Distance between the CCPs (D) 

The distance between the CCPs is used to ensure that the two compatible CCPs of a part are as 

close as possible. This geometric relationship is part of the grouping criterion because two close 

CCPs are more likely to define the boundary of the projected envelope of a single simple 

volumetric primitive. The distance between two CCPs is defined by, 

1 2
1

max(dim ,dim )
mpCCP mpCCP

D
x y

−
= −                                               (EQ. 3) 

where 1mpCCPand 2mpCCP  are the midpoints of the two CCPs, and dim x and dim y are the 

number of columns and rows of the image. This value is between 0 and 1. 

5.1.3. Similitude in length (SL) 

The similitude in length is used to support the grouping of two compatibles CCPs that have about 

the same length. This is because in general, the two CCPs defining the projected envelope of 

simple volumetric primitives have similar lengths. For the similitude in length, the circular arcs 

are approximated by straight line segments in a similar fashion as for the parallelism. The actual 

length of the circular arcs is not used because the similitude in the distance between the 

endpoints is the property of interest. Indeed, we are interested in obtaining regions that are as 

rectangular as possible. The similitude in length is calculated as follow: 

1 2

1 2

min( , )

max( , )

l l
SL

l l
=                                                         (EQ. 4) 

where l1 and l2 are the length of the CCPs. This value is between 0 and 1. 
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5.1.4. Similitude in type (ST) 

The similitude in type favours the grouping of CCPs of the same type (circular arcs or straight 

line segments). This is justified by the fact that, in general, simple volumetric primitives have 

their envelope defined by two CCPs of the same type. The similitude in type is computed by 

comparing the type of the two CCPs. The similitude in type is given by, 

{ 1 2

1 2

1 if ( ) ( )
0 if ( ) ( )

ST Type CCP Type CCP
Type CPP Type CCP

= =
≠

                                              (EQ. 5) 

where Type() is an operator that returns the type of a CCP, and CCP1 and CCP2 are the two 

tested CCPs. This value is between 0 and 1. 

5.1.5. Over lap (O) 

For simple volumetric primitives, the two CCPs defining their envelopes are in general 

overlapping. The overlap relationship component of the grouping criterion supports the pairs of 

CCPs that are overlapping. The overlap (O) for a pair of straight line segments is defined as the 

length of the projection of CCP2 on CCP1 (Lo1) and the length of the projection of CCP1 on 

CCP2 (Lo2) divided by the sum of the length (L1) of CCP1 and of the length (L2) of CCP2. That 

is: 

1 2

1 2

Lo Lo
O

L L

+=
+

                                                             (EQ. 6) 

This value is also between 0 and 1. For circular arcs, the overlap is calculated by approximating 

them by straight line segments as for the parallelism. 
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For the two dark CCPs of Figure 2 (Group X), the value of the grouping criterion is 0.98, and the 

values of its components are P=0.99, D=0.94, SL=0.99, ST=1, and O=0.99. For the two dark 

dotted CCPs of Figure 2 (Group Z), the value of the grouping criterion is 0.34, and the values of 

its component are P=0.03, D=0.56, SL=0.10, ST=1, and O=0. 

5.2. Par t segmentation 

Now that the grouping criterion has been defined, part segmentation itself can be described. 

Figure 2 illustrates the part segmentation process. The segmentation begins by first removing the 

CCPs that are outside the outline of the object (Figure 2a). Then, grouping attempts that take into 

account the segmentation stage are made (Figure 2b). The set of possible groupings depends on 

whether we are at Stage 1 or 2 as explained below. If a valid group is found, the boundary of the 

part is completed (Figure 2c). If the segmentation process is at Stage 1, the CCPs making out the 

part are removed (Figure 2d). The segmentation process cycles between the three last steps 

(Figure 2c,d and e) until no more groups can be found. The segmentation process is completed 

(Figure 2f). The next subsections describe in details CCPs grouping and group validation (Figure 

2b), boundary completion (Figure 2c), part CCPs removal (Figure 2d) and the difference 

between the two segmentation stages. 

5.2.1. CCPs grouping 

Grouping attempts are made from all the available constant curvature primitives (CCPs). The 

availability of some CCPs depends on the segmentation process stage. At Stage 1, only the 

outline CCPs are available for grouping, whereas at Stage 2, all CCPs are available. CCPs 

grouping first start by selecting the longest CCP available. To select the longest CCP, 

Figure 2 
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cocurvilignity (colinearity or cocircularity) is used to reconstruct fragmented CCPs. A 

reconstructed fragmented CCP or a CCP that does not need reconstruction is called a 

reconstructed CCP (RCCP). For each grouping attempts, the longest RCCP available (seed 

RCCP) is tentatively grouped with all the RCCPs available. The quality of each grouping 

attempts is measured by the value of the grouping criterion. The pair of RCCPs that gets the 

highest value for the grouping criterion, which is also higher then the grouping criterion 

threshold, is considered as a possible group. The grouping criterion threshold is the minimum 

grouping criterion value considered as reflecting a valid group. This group is then validated. 

5.2.2. Group validation 

Group validation ensures that the groups that are made are the ones in which we have more 

confidence. The groups in which we have more confidence are groups built from outline RCCPs, 

and groups that bound the object. For groups made of two outline RCCPs, the impact of the 

interior RCCPs on these groups must be investigated. This is the goal of Verification 1 of the 

group validation step. Figure 3 shows the three possible situations in which a group of two 

outline RCCPs can be formed. Although the two RCCPs respect the grouping criterion, they do 

not necessarily correspond to the best group (see Figure 3, Situation A). Verification 1 

determines to which situation a grouping corresponds and reject or accept the group accordingly. 

Groupings that correspond to Situations B and C (see Figure 3) are accepted. Groupings that 

correspond to Situation A are rejected. The grouping situation is established by reattempting to 

group the outline RCCPs under validation with interior RCCPs. If no group is found, the group 

under validation corresponds to a grouping in Situation C. If the first two RCCPs under 

validation are grouped with the same interior RCCPs, the group under validation corresponds to 

Figure 3 



 14

a grouping in Situation B. In any other cases, the group under validation corresponds to a 

grouping in Situation A. Verification 1 applies only to groups made during Stage 1. 

A match may not be valid because the pair of matched RCCPs bounds a portion of the scene 

background. Verification 2 of the group validation step addresses this issue. To verify if the 

inside area of the object is between the two matched RCCPs as it should, coordinates of points, 

sampled between the two RCCPs, are verified to confirm if they belong to the set of coordinates 

of points of the inside area. Since the outline of the object is known, the area it covers is known 

and so is the set of points inside this area. Figure 4 shows how the sampled points are chosen. If 

all the sampled points belong to the set of points of the inside area, the two RCCPs bound a 

region of the object, and hence, the grouping is accepted under this verification. This verification 

applies to both stages. 

If a grouping is rejected for one of the two verifications, this pair of RCCPs is removed from the 

solution space along with all the pairs made of the current seed RCCP. A new grouping attempt 

is initiated with the next longest RCCP available. 

5.2.3. Boundary completion 

When a valid group is found, the complete boundary of the part is constructed from the set of 

CCPs of the object or from virtual straight line segments. This is done by attempting to make a 

path of CCPs that links the endpoints of the two grouped RCCPs. The paths are constructed 

based on two criteria. First, all the CCPs of a given path must remain inside the area defined by 

the lines passing by the endpoints of each of the two grouped RCCPs. The dotted path in Figure 

2 (Path Y) is invalid because of this criterion. Next, two consecutives CCPs in the path must be 

Figure 4 
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oriented as much as possible in the same way. The path is constructed using proximity between 

endpoints.  

To add a CCP in the path, a set of nearby CCPs is first built. Then, the orientation criterion is 

applied to select the CCP to add to the path. RCCPs can be added to the path if they reach 

directly the destination RCCP (the RCCP to reach to complete the path), and if they bridge a gap. 

During the construction of the path, there is no backtracking. Hence, if the path does not reach 

the destination RCCP, the path construction fails. In this case, the two unlinked endpoints are 

linked by a virtual straight line segment.  If two virtual straight line segments are required to link 

the endpoints, they are added so that they do not intersect and are both as short as possible. The 

complete boundary obtained is considered as the boundary of the projection of a part. 

5.2.4. Part CCPs removal 

For parts obtained at Stage 1, the CCPs that are inside the area of the part, and the RCCPs or 

CCPs that define its boundary are removed from the solution space (i.e. they are made 

unavailable). 

5.2.5. Differences between the two segmentation stages 

The two segmentation stages differ mainly by the set of available RCCPs for grouping. At stage 

1, only the outline RCCPs are available. For stage 2, all the RCCPs are available, but groupings 

are attempted first with outline RCCPs. For the second stage, the outline RCCPs are still 

considered more significant. Furthermore, for Stage 2, only Verification 2 of the group validation 

step is made because no structural information is available to perform verification 1. In addition, 

at Stage 2, the part CCPs are not removed. This is because no structural information is available 

and hence, the groups are less certain. We rather keep all the ungrouped RCCPs, consider all the 
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possibilities, and obtain overlapping parts, than make erroneous premature decisions. These 

overlapping parts will have to be further processed to determine the best ones. Note, however, 

that the seed RCCP is made unavailable in both stages to avoid redundancy.  The segmentation 

proceeds to Stage 2 when no more groups can be formed at Stage 1. 

6. Results and analysis 

To validate our approach, three experiments have been designed, each investigating a specific 

aspect. The first experiment verifies the validity of our grouping criterion by processing synthetic 

constant curvature primitives (CCPs) drawings. The second experiment extends the first 

experiment, by verifying the validity of our grouping criterion for images of real scenes. The 

third experiment investigates the consistency of the segmentation for several images of the same 

object. The next subsections present each of these experiments, followed by a discussion about 

the parameters involved in the segmentation process and computation times. 

6.1. Exper iment on synthetic CCPs drawings 

The CCPs drawings chosen to validate our algorithms depict objects made of simple volumetric 

primitives, likes cylinders, prisms, cones, etc (see Figure 5). Note that these same drawings were 

used to demonstrate the capabilities of PARVO [12]. Ideally, the parts obtained by our method 

should correspond to each of the individual simple volumetric primitives composing the object, 

if their projections are bound by at least two outline CCPs. For projections bounded by less then 

two outline CCPs, the individual faces of the volumetric primitives should be found. Our 

experiments show that it is the case for twenty-one of the twenty-three CCPs drawings tested. 

The segmentation obtained for the drawings of a stepladder is shown in Figure 6. Note that the 

Figure 5 
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parts labelled A and B correspond to the two visible faces of the projected prism. The prism is 

not extracted as a whole because it has no CCPs on the outline.  

Figure 7 shows the results for the two CCPs drawings that were not segmented correctly. For the 

pen, the reason is the failure to reconstruct a fragmented circular arc (see the fragmented circular 

arc indicated by two arrows in Figure 7). This reconstruction failure causes the under 

segmentation of the body of the pen and the clip. Note that for this view of the pen, the clip could 

not be segmented from the body even if there was no reconstruction failure because it is almost 

completely inside the body. The area of the clip inside the body is considered as texture by our 

method. The remaining CCPs of the clip could not form any group, and hence it could not be 

segmented. For the briefcase, the handle, which is made of volumetric primitives that are not 

bounded by the outline, is not properly segmented because of the grouping criterion. To obtain a 

good result for this CCPs drawing, the similitude in length and the distance between the CCPs 

should not have the same weight in the grouping criterion for different region of the handle. 

Since a unique grouping criterion is used for the entire image, it is not possible to perfectly 

segment the handle. This problem is occurring because the handle is made of small CCPs of 

about the same length that are nearby.  

This experiment demonstrates that our segmentation method can process synthetic CCPs 

drawing exactly as expected for 91,3% of the drawing we have tested. For the drawings that were 

not entirely processed correctly, the problems causing the errors are well understood, and affect 

only local portions of the objects. Therefore, our method is suited to segment objects and can be 

Figure 7 

Figure 6 
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further validated with images of real scenes to observe its performance in presence of noise, 

textures, and shadows. 

6.2. Exper iment on images of real scene 

The goal of this experiment is to show that our grouping criterion and our method can be used to 

process images of an object in a real scene. For this purpose, twenty-four images of objects in 

real scenes have been processed. Among these, nineteen were segmented properly. Figure 8 

shows the part segmentation result obtained for the image of a compass. The partial ring at the 

top of the compass is extracted as a disc, because circular arcs describing the ring are missing in 

this region. The method has performed adequately with the CCPs available in this region. 

Although the results obtained are not perfect for all the images tested, the majority of the parts 

obtained correspond to simple volumetric primitives making out the object. Hence, in general, 

the method reach its goal, which is to segment an object into its simple volumetric primitives, as 

it, succeeds for 79.2% of the images. For the images that are not segmented correctly, the errors 

are only local to a portion of the object. The segmentation method handles relatively well 

textures and noise as fragmented CCPs are reconstructed and the outline is used to obtain clues 

about the structure of the object. The following paragraphs discuss some segmentation errors. 

Figure 9 shows a result for an airplane with segmentation errors. Parts corresponding to wings 

(Part A, C, D, F, G, H, J, K) and an engine (Part I) have been segmented correctly. The fuselage 

is over segmented (part B and E). This is because the reconstruction of the fragmented boundary 

Figure 8 

Figure 9 
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of the fuselage has failed. There is a spurious background part (part L). This is due to a failure of 

the object detection step. Therefore, the presence of this part is not a failure due to the grouping 

criterion. Finally, there are parts (part M, N, O) that correspond to markings on the airplane. 

These parts are found because they are in between two simple volumetric primitives. In this case, 

our grouping criterion behaved correctly in the circumstances. The CCPs composing these parts 

were available for grouping, and they have been grouped as it should. However, these parts are 

irrelevant for the modelling of the structure of this particular airplane.  In this case, they could be 

removed by comparing their size with the size of the other part of the airplane and by analyzing 

their location (they are in between two nearby parts). 

Figure 10 shows the result from another image with some segmentation errors. Aside from a leg 

that has been over segmented (part E, G) because two very close parallel straight line segments 

were in this area, two legs (part B) and two rungs (part F) are each extracted as one part. This is 

because of the viewpoint. The two individual parts become overlapped, and they appear as a 

prism for which two faces are seen. Since, CCPs of the two individual parts are on the outline, 

are mutually grouped, and are validated by the Verification 2 of the group validation step, they 

are extracted as a whole. Although these are not desirable parts, our segmentation algorithm is 

working correctly. Higher-level reasoning is needed to prevent this kind of grouping. This shows 

that our segmentation method is not completely independent of the viewpoint. However, for our 

image query application, a total independence from viewpoints is desired, but not essential. 

Obtaining consistency of description for a wider range of viewpoints than is possible with 2D 

contour models was the intent for the design of this segmentation method. We believe that 

description by simple volumetric parts allows better viewpoint independency performance when 

Figure 10 
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comparing 2D images of objects in a database. The third experiment will investigate this 

consistency of description.       

6.3.  Exper iment on segmentation consistency 

For modelling an object by a graph of parts, a method that can segment object into parts is not 

enough. That method must give consistent segmentations for different images of the same object 

and for a certain range of viewpoints as noted in the previous section. This issue is not addressed 

in the majority previous works on part-based description of objects. This experiment verifies 

whether our segmentation method gives consistent segmentations. Fifteen images of a desk lamp 

have been processed for this experiment. They are shown in Figure 11. Two types of 

segmentation are obtained (see Figure 11). The segmentation of the lamp pole in one or more 

parts is not considered as a difference in the type of segmentation since they can be easily 

merged into one (see [1]). The difference in the types of the segmentation for the fifteen images 

is in the segmentation of the lampshade. For fourteen of the fifteen images, it is segmented as 

one part, and for the remaining image, it is segmented as two parts. The lampshade is segmented 

as one part for the majority of the images, because the circular arc marked with an X in Figure 11 

is the longest CCPs of the lampshade. Hence, it is grouped first, and it gives a valid group with 

the opposite circular arc. For the image that does not give this segmentation, the circular arc 

marked with an X is still tentatively grouped with the opposite circular arc, but this group is not 

valid under Verification 1 of the group validation step. This is because there is an additional 

circular arc between these two that correspond to the light bulb visible under the lampshade. 

Figure 11 
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This experiment shows that our method is capable, in general, of giving consistent segmentation 

for different images of the same object. The views of the lamp used in this experiment are quite 

varied, and the 2D contour shapes of the lamp quite different. Obviously, texture (like the light 

bulb) can cause different segmentation. However, these segmentation errors remain local.  

6.4. Segmentation parameters and computation times 

To segment images with our method, three parameters may be adjusted. They all involve the 

reconstruction of CCPs. They are the cocircularity tolerance, the colinearity tolerance, and the 

gap accepted between two CCPs forming a reconstructed CCP. The cocircularity and colinearity 

tolerances concern the perpendicular distance between two circular arcs or two straight line 

segments having the same orientation. These tolerance parameters adjust the threshold in pixels 

of the maximum perpendicular distance allowed. The threshold on the gap is expressed as the 

percentage of object CCPs support for a reconstructed CCP. If these thresholds are too high, any 

two CCPs can form a reconstructed CCP. If the thresholds are too low, then fragmented CCPs 

cannot be reconstructed. For synthetic line drawings, unique values can be used for these 

parameters. As expected, for images of real scenes, these parameters vary from one image to 

another, although the range of values to obtain identical segmentations overlap for several 

images. This is particularly the case for the gap and colinearity parameters (Table 1). We believe 

that the selection of the thresholds could be automated, using constraints on the number of parts 

and the number of overlaps, and by analyzing the variation in the dimension of parts in specific 

areas when the threshold values are changed.   
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Another important issue is the computation time. In the context of a database query engine, the 

query image must be processed rapidly. Without optimization, the computation times obtained 

on an Athlon Thunderbird 1.2 GHz are all under 10 seconds (see Table 1). The complexity of the 

method is in the order of n2, where n is the number of CCPs. Note, that each time a group is 

found, CCPs are removed from the solution space.  

7. Conclusion 

This paper has presented a new method to segment an object from an image of a real scene into 

parts that correspond to the projections of simple volumetric primitives. These projections of 

simple volumetric primitives can be described mainly by their two main sides. They are obtained 

by grouping two constant curvature primitives (CCPs) that respect a criterion involving simple 

geometric relationships, like symmetry, length, distance, similarity and overlap. The outline of 

the object is also used to add to the grouping process knowledge about the structure of the object.  

The results obtained show that our method performs well enough to be used in the context of our 

image database query engine. In general, the segmentations obtained for different images of the 

same object are consistent. That is, for the same object, the segmentation is usually the same for 

a range of viewpoints that are not too odd. The method is capable of segmenting objects made of 

well-defined simple volumetric primitives, like cylinder and prism. It can also tolerate a certain 

amount of marking and texture on the object. 

Future work will consist of testing these results to query object in a database. First, qualitative 

volumetric primitives will be inferred from these projections of simple volumetric primitives and 

Table 1 



 23

a qualitative volumetric primitives graph of the object will be made. Then, a method to compare 

these graphs will be implemented. Finally, the performance of the complete system will be 

characterized by using the query engine on a variety of images. Currently, all these tasks are 

under design and implementation (see [1], [16]).  
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Figure 1: Overview of the query engine. 

Figure 2: The segmentation process 

a) The segmentation begins by removing exterior CCPs, b) CCPs grouping attempts are made, c) 
The boundary of the part is completed, d) The CCPs making the part are removed (if Stage 1), e) 
Other grouping attempts are made, f) Segmentation result. 
 
Figure 3: Validation with inter ior  CCPs 

For Situation A, two parts with only one CCP on the outline are grouped. If both CCPs are re-
grouped with interior CCPs, the group becomes invalid since they are both best grouped with 
other CCPs. For Situation B and Situation C, the groups are validated because both grouped 
CCPs are grouped with the same interior CCP or they are again grouped together. 
 
Figure 4: Ver ifying if the object is between to CCPs. 

Intermediate points are midpoint between CCPs points. Validation points are midpoint between 
intermediate points or between an intermediate point and the midpoint of a CCP. 

Figure 5: The line drawing used for  the first exper iment. 

Figure 6: Segmentation result for  a stepladder. 

Figure 7: Segmentation results for  two problematic drawings 

Figure 8: Segmentation result for  a compass image. 

Figure 9: Segmentation result for  an airplane image. 

Figure 10: Segmentation result for  a stool image. 

Figure 11: Two types of segmentation for  images of the same desk lamp. 

 
 
 



 

 

 

 

 

 

Table 1: Parameters values to obtain identical segmentations and computation times of 
some images of real scenes. 

Image name Number of 
CCPs 

Cocircularity 
tolerance (pixels) 

Colinearity tolerance 
(pixels) 

GAP (%) Computation time 
(s) 

Learjet1 171 [0,1] 3 [20,30] 7.14 

Learjet2 70 [0,3] [3,5] [40,80] 1.64 

Compass 92 4 [7,8] [40,50] 2.90 

Stool2 177 [0,4] 7 [40,50] 7.62 

Cup 39 [4,5] [1,20] [40,50] 0.83 

VR-Room_Lamp1 61 [1,3] [1,14] [20,50] 1.27 

VR-Room_Lamp2 41 [6,11] [1,20] [20,30] 0.65 

VR-Room_Lamp3 37 [3,6] [1,20] [20,40] 0.64 

 



 

Summary 

This paper presents one significant aspect of a project aimed at the design of an image database 

query engine, where the images are searched at the 3D object-level. This approach is a novelty 

since the majority of existing image database query engines search images by comparing the 

colours, the textures and the 2D shape of regions in the images. The main aspect and contribution 

of this paper is a new method for object part segmentation, from circular arcs and straight line 

segments primitives, that is suited to process images of object in real scene. In the context of this 

work, 2D parts are defined as regions delimited by groups of circular arcs and straight line 

segments (constant curvature primitives), which can later on be interpreted as the projections in 

the plan of simple volumetric primitives, likes cylinders and prisms. Our new method is based on 

perceptual grouping. It groups constant curvature primitives (CCPs) using intermediate-level 

geometric relationships and object outline information. The use of the outline of the object 

reduces the complexity of the grouping process, since many groups are discarded based on this 

information. The principle of our method for part segmentation is to group two CCPs with a 

criterion based on intermediate-level geometric relationships and with the outline of the object to 

account for its structure. Subsequently, the complete boundary of the part is detected by making 

cycles with object CCPs to link the two grouped CCPs. The shape of the parts extracted is only 

limited by the structure of the object (obtained via the outline) and by the geometric relationships 

between the two CCPs grouped. We will show that our approach is suited to process 3D objects 

in 2D images of real scenes by several validating experiments. 
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