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Abstract

This paper presents the image retrieval software
PLASTIQUE. It distinguishes itself by the use of a 3D
part-based model to represent objects in images. This
model is based on results from studies in cognitive psy-
chology. This model allows PLASTIQUE to match im-
ages of objects that are deformed or seen from different
viewpoints. The model also abstracts colours and textures
to focus on object structure. Our model and our method to
build it can also be used for object recognition applica-
tions. The complete system is presented by an overview of
all the processing stages. Experiments assess the perform-
ance of our model and of the modeling method used in the
image retrieval application PLASTIQUE.

1 Introduction

Finding images in databases using another image as the
query is currently an important research topic [1]. The
idea of using an image as a query comes from the fact that
it can be difficult to describe an image with words. In
addition, many databases are composed of images that are
not annotated by keywords. Hence, the content of the
image itself has to be compared directly. Making a model
of an image is not an easy problem. In the majority of
efforts in this topic ([2],[3],[4],[5]), images are modeled
by their colours, textures and 2D shapes. However, these
models are sensitive to changes of viewpoint and changes
in the textures and colours. For example, a blue desk lamp
and a red desk lamp viewed from significantly different
viewpoints cannot be matched. For this reason, we pro-
pose a 3D part-based model that abstracts colours and
textures. This model applies to images of manufactured
objects that are seen in the foreground. A method for
obtaining this model from an image is proposed. This
method models objects in images by graphs of volumetric
primitives. The same method can be applied to model
objects for object recognition applications.

This paper presents the integration, in an image re-
trieval software, of the different modules developed to
implement our method. The main contribution of this
paper is the evaluation in a whole of the latest contribu-
tions in part-based modeling of objects made by the au-
thors ([6],[7],[8],[9]), and the assessment of their per-
formances by an image retrieval application. Hence, it is
not claimed here that our part-based modeling method
outperforms other image retrieval modeling techniques.
This paper essentially assesses, based on experimental
results, how part-based modeling can perform in image
retrieval applications.

Our review of the image retrieval literature has shown
that part-based models have not yet been used in this field,
because object segmentation algorithms are said to be too
brittle for automation [1]. Hence, the use of a part-based
object representation in image retrieval is an important
contribution in itself.

The advantage of using a part-based representation in
image retrieval is that objects in images, with different
colors and textures, seen from different viewpoints can be
matched. This is not possible with 2D shape-based, or
colors and textures-based image retrieval.

Section 2 explains the basic principles behind our
model and our method. Section 3 gives an overview of the
method, and of PLASTIQUE, our image retrieval soft-
ware. Section 4 illustrates the performance of our method
by query experiments. Section 5 concludes the paper.

2 The theories behind PLASTIQUE

The representation model of objects in images is what
distinguishes PLASTIQUE from other image retrieval
engines. The model chosen for representing objects in
images is a graph of volumetric primitives. This choice
comes from the RBC (recognition-by-components) theory
and by researches in perceptual grouping. The RBC the-
ory has given us the inspiration for the model, and percep-
tual grouping tools to obtain the model.



2.1 RBC (Recognition-by-components)

The RBC theory [10] claims that humans recognize ob-
jects by the structure of their constitutive parts. For exam-
ple, humans recognize a table because they see four legs
connected to a board. Hence, objects can be modeled as
graphs of volumetric primitives. Whether it is true or not
that this is how humans recognize objects, this model is
interesting because recognition of objects seen from dif-
ferent viewpoints can be accomplished by only a few
images. This is why this model has been chosen. In a
database, there might be only one copy of a graph of an
object. If the query is a similar object, the query engine
must be able to compare the graph of these two images.
This model allows the query engine to compare the two
objects as graphs of volumetric primitives because they
can each be constructed from a single image. View-based
models cannot be used, as not enough views of the object
are available.

2.2 Perceptual grouping

The chosen model has to be constructed from images of
objects. Perceptual grouping [11] allows us to carry out
this task. Researches in cognitive psychology have
pointed out that when a human is shown and asked to
make groups from sets of straight line segments, they are
grouped in specific ways. The straight line segments are
grouped by their level of symmetry, by proximity, by
similarity, and by their level of overlap. Hence, humans
are sensitive to the structure in the images they see. As
image processing is concerned, these geometric relation-
ships can be used to group (or structure) straight line seg-
ments and circular arcs into boundaries of areas that can
be interpreted as being projections in a plane of volumet-
ric primitives. These areas are named parts. A graph of
volumetric primitives can be constructed by hypothesizing
the volumetric primitives that might have given rise to the
parts found by the grouping operation.

Fig. 1. Overview of PLASTIQUE

3 PLASTIQUE

PLASTIQUE (Parts, Links, and ASsociated Templates
Image QUery Engine) has been designed for querying
image databases of manufactured objects, which are inter-
pretable as arrangements of simple volumetric primitives.
Images in the database are from real scenes with one main
object in the foreground that must be detectable in the
image (see [6]).

Fig. 1 shows an overview of PLASTIQUE. The
shaded region represents the four modules required to add
an image or query the database. The database is composed
of various 2D images of 3D objects, and their associated
models. To query or add an image in the database, the
user gives as input an example 2D image or a sketch of
the 3D object. The image is first processed to obtain con-
tours of linked local intensity edges that are segmented to
produce a map of constant curvature primitives (CCPs).
An initial grouping of the CCPs produces the outline of
the object (Object detection) [6]. The CCP map is then
processed further to obtain parts using the extracted out-
line (Part segmentation) [7]. These parts are labelled
based on the possible volumetric primitives that may pro-
ject onto them (Object modeling) [8]. Parts are interpreted
as volumetric primitives since the aspect of a projected 3D
object may change significantly for different viewpoints.
The object modeling module also computes the spatial
relationships between parts. Finally, the constructed
model is compared with the models in the database
(Model matching). If similar models are in the database,
the corresponding 2D images are shown to the user. If not,
the newly built model and its corresponding image may be
added in the database.

The next subsections outline each of these steps and
introduce PLASTIQUE graphical user interface.

Fig. 2. PLASTIQUE graphical user interface.

3.1 PLASTIQUE graphical user interface

The graphical user interface (GUI) of PLASTIQUE is
shown in Fig. 2. This GUI allows users to query and add
images in the database. Images and sketches of objects
can be used as query. The PLASTIQUE user interface has



a result window that shows query results as a sorted list of
matching images. In addition, this window allows users to
visualize intermediate results from the computation of the
model for the object in the query image. Being a multi-
documents application, PLASTIQUE can keep results of
different queries in separate documents.

The PLASTIQUE user interface and PLASTIQUE
query engine are distributed applications. The
PLASTIQUE user interface connects to the query engine
via Internet. This gives PLASTIQUE flexibility.

3.2 Extraction of low-level data and object
detection

This step is essentially for information gathering. This
step is used to extract the data needed for the application
of perceptual grouping at the part segmentation step. First
of all, an edge detector is applied on the image to process.
Then, edges are grouped into edge contours. Constant
curvature primitives (CCPs) are fitted on the edge con-
tours. Edge detection, edge grouping, and CCPs extraction
is performed using the algorithms of MAGNO [9]. The
extracted CCPs are straight line segments and circular
arcs.

To obtain only parts that are inside the object area, the
external outline of the object is extracted [6]. The external
outline of the object is detected by making a closed cycle
of CCPs that maximizes the area to perimeter ratio. Dur-
ing the construction of the cycle, CCPs are added follow-
ing simple rules that improve robustness to object tex-
tures. These rules involve proximity and angular distance.
Fig. 3 shows the CCPs and the outline obtained for an
airplane image.

Fig. 4. Parts extracted from the airplane image. The CCPs inside
each part are also shown.

3.3 Part segmentation

Part segmentation [7] is the step where the construction of
the models begins. Part segmentation determines the
number of volumetric primitives the model will be made
of, the relationships between them and the shapes of the
projections. Hence, this step is critical for the quality of
the model.
Starting with the longest CCPs, part segmentation groups
CCPs with a geometric criterion. The components of the
geometric criterion are measures of parallelism, prox-
imity, similarity in type, similarity in length and overlap.
The geometric criterion is applied on pairs of CCPs. The
pair that obtains the highest values for the measures of the
geometric criterion is considered as defining the main
shape of a part. Joining the CCPs of the pair with CCPs
nearby completes the boundary of the part. CCPs used for
the part and CCPs inside the part are removed. Other part
construction attempts are performed with the remaining
CCPs. Several validation tests are applied on the pairs of
CCPs to ensure that valid parts are obtained. A part may
be invalid if it covers a region outside the extracted exter-
nal outline.

When all the possible parts are obtained, their relation-
ships are established using proximity and the sequence in
which they are appearing as the external contour of the
object is scanned. Two consecutive parts on the outline
are linked together. Fig. 4 shows the five parts obtained
for an airplane image. The complete area of the projection
of an object may not be completely covered by the parts,
since there is no criterion specified to optimize coverage.

3.4 Object modeling part 1: Part simplifica-
tion

Object modeling can be separated into three distinct sub-
steps. The first substep is part simplification [8]. As the
name of this substep implies, its goal is to simplify parts
so that a rule-based classifier can hypothesize volumetric
primitives from them. The original parts can have a wide
range of different shapes and they can have a boundary
composed of various numbers of CCPs. Hence, a rule-
based classifier cannot process these parts. An undeter-
mined number of rules would be required to process all

C)B)A)

Fig. 3. A) Original airplane image, B) Extracted CCPs, C) Extracted outline.



the possible parts. Furthermore, we want to keep the in-
formation conveyed by the CCPs types (straight line seg-
ment or circular arcs) of the boundary. Template matching
of volumetric primitives may approximate two straight
line segments by a circular arc. This is why we have re-
jected this method. Instead, we have chosen to approxi-
mate the parts by template parts, which are all the possible
qualitative projections of a set of general volumetric
primitives. These template parts preserve CCPs types.
Since, the number of template parts is known, a rule-based
classifier can be used to hypothesize volumetric primitives
with a reasonable number of rules.

Fig. 5. Simplified parts for the airplane image.

The simplification of the parts has been designed to
preserve the general shape of the original parts. Points are
sampled on the boundary of a part. Among these, 3 or 4
points that maximize area coverage and rectangularity
(since parts have their shape mainly defined by two CCPs)
are selected. The CCPs of the boundary of the original
part between these points are analysed. From this analysis,
CCPs, that best approximate the original CCPs of the
boundary are created between the points. The new CCPs
approximate the boundary in such a way that the CCPs
types are preserved as much as possible. Fig. 5 shows the
simplified parts for the airplane.

3.5 Object modeling part 2: Volumetric
primitive hypotheses

Volumetric primitive hypotheses [8] are performed from
the simplified parts using a rule-based classifier. The rules
involve geometric relationships between the CCPs of the
simplified part. These relationships are parallelism, con-
vexity, CCPs type, and the number of CCPs of the simpli-
fied part. In all, for 18 volumetric primitives [8], the clas-
sifier needs 49 rules. Each rule is associated with one or
more volumetric primitive hypotheses with a fuzzy value
reflecting a probabilistic ranking between the hypotheses.
These hypotheses are volumetric primitives that project in
the plane with shapes similar to the simplified part re-
specting the given rule.

3.6 Object modeling part 3: Model construc-
tion

Model construction consists in building a graph with the
volumetric primitive hypotheses as nodes and their spatial
relationships as edges. The constructed graph has nodes
with fuzzy attributes (a volumetric hypotheses associated
to a fuzzy ranking value) and has edges with fuzzy attrib-
utes (the type of connection with a probabilistic fuzzy
ranking value).

3.7 Model matching

Model matching [12] is performed using structural index-
ing adapted to graphs with fuzzy attributes. Graphs of
images in the database are inserted into an index where
each row corresponds to a subgraph of 1, 2 or 3 nodes.
Therefore, before adding graphs in the index, they are
divided into a subgraph of 1, 2, and 3 nodes. When the
database is searched, subgraphs of the query are indexed.
Each time a subgraph is indexed, all the images in the
database that have this subgraph receive a vote. The im-
ages that obtain the most votes are the ones that have
graphs that most resemble the query image graph.

4 Experiments

To validate our model and our model construction
method, PLASTIQUE has been tested for querying im-
ages. The database used has 135 images of six objects: an
airplane, a stool, a lamp, a coffee cup, a compass and a
watering can. Sample images of these objects and simpli-
fied parts obtained are shown in Fig. 6. Before statistically
measuring the performance of PLASTIQUE to query
images, we show a query result to illustrate the capabili-
ties of our method.

Fig. 6. Sample object images and associated simplified parts
used in the experiments.



4.1 Example of a matching result

Fig. 7 shows a query result for a lamp image. The 25 most
similar images are shown. As it should, the query, which
is in the database, ranked first. The rank reflects the level
of similarity of the model of an image in the database with
the model of the query image. From this result, several
important observations can be made. The model of the
query lamp image is matched with other models of images
where the lamp is seen from significantly different view-
points. In particular, this is the case for image 2, 6 and 14.
The model of the query lamp is matched also with models
of images of deformed lamps. This is case for image 3, 4
and 13. The deformations do not affect the model of the
lamp because the same volumetric primitives can still
represent the deformed pole. These two observations
demonstrate the advantages of modeling objects by volu-
metric primitives.

There are some models of images of other objects that
are considered resembling the model of the query lamp.
The graphs of these images have nodes and groups of
nodes similar to the query graph. Since our matching
method is not exact and the graphs are not compared as a
whole, theses graphs are considered quite similar. For
example, they might be similar when compared node by
node and by groups of two nodes, but different by groups
of three nodes. Because there are variations in the models
obtained for each lamp image, some models of lamps
obtain a matching score that is inferior to images of other

objects (images 21 and 25, for example). In this case, it
can be observed that the model of the query lamp have 4
parts, while model of image 21 has three parts and the
model of image 25 has five parts. If all lamps had the
same model graph, this phenomenon would not occur.
However, starting from images of a real scene, as is the
case here, it is difficult to always obtain the same model.

In any case, this result shows, based on experimental
results, advantages and drawbacks of using a part-based
representation. Although the result shown in Fig. 7 is not
perfect, it shows that part-based models are useful in cer-
tain circumstances. This is the case, for deformed objects
and objects seen in different viewpoints. The next section
investigates furthermore the performance of our model.

4.2 Precision vs recall

The previous section has shown qualitatively the abilities
of our method. This section analyses our method by quan-
titative measures. To verify how our method performs, we
have chosen to measure its precision for different recall
values. This measure reflects how many images had to be
found to get x% of the images of object y. This is the stan-
dard definition of "precision vs recall". The precision in
percentage is formally,

%100*
)(

precision
F

iN(%recall)* image= (1)

25

Q
11111

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24

Fig. 7. Result from the query of a lamp image (image Q). The top of the figure shows the result as images. The bottom of
the figure shows the result as simplified parts images. The numbers indicate the ranking between the images in terms of
similarity to the query.



where Nimage(i) is the number of images that feature object
i, F is the minimum number of images needed to find the
(%recall)*Nimage(i) images of object i in the database, and
%recall is the proportion of the number of images of a
given object to find.
The experiment to measure the “precision vs recall” val-
ues of PLASTIQUE has been conducted as follows. First,
a database of 135 images of six objects has been con-
structed. The objects are the same as the one mentioned in
the previous section. Each of the 135 images was used as
a query. For each query result, the “precision vs recall”
values have been computed from the sorted list (based on
similarity ranking) of images obtained. Precision values
have been computed for recall of 10%, 20%, 30%, 40%,
50%, 60%, 70%, 90% and 100%. This experiment has
been repeated for different sets of criteria. Model match-
ing can be done with no additional criteria, as they are not
essential. That is the proportions and relative dimensions
are ignored. However, it was of interest for us to verify if
the use of additional information could improve matching
performance. We have implemented three criteria that can
be applied separately or in combination. The first criterion
concerns the proportion of the volumetric primitives. With
this criterion, volumetric primitives (single graph nodes)
can be matched only if their axis to section ratio is similar
qualitatively. The second criterion applies to subgraphs of
two nodes. Subgraphs of two nodes can be matched if the
relative dimension of the volumetric primitives of each
node is the same. The third criterion is identical to the
second, but applies to subgraphs of three nodes.
Fig. 8 shows “precision vs recall” plots when matching
without criteria and with criteria 1 and 2. When matching
without criteria, the maximum precision obtained is about
77%. When matching with criteria, the best result is ob-
tained with criteria 1 and 2. On average a gain of 10% is
obtained, with the best precision value being about 86%.
Using a combination of all the criteria gives a slightly
poorer performance, because the third criterion is too
severe for the quality of the models obtained. Criteria 1
and 2 enhance the retrieval performance significantly.
Hence, our model benefit from the use of additional in-
formation about the parts and their spatial relationships.
Of course, this effect was expected, but it was neverthe-
less interesting to validate it experimentally.

Even more interesting is the study of the “precision vs
recall” for the six objects individually. The results for this
study are shown in Fig. 9. Our method performs better for
simple objects like a watering can and a compass. It per-
forms well also for the lamp. However, our method has
difficulties with objects like the airplane and the stool.
Our method performs poorly for the stool because a con-
stant and good model cannot be obtained. This is because,
our segmentation algorithm is not aware of the see-
through holes in the stool. The inside area of the stool is
not segmented from the background because only the
external outline of the object is extracted. For the airplane,

the performances are poor because PLASTIQUE fails in
extracting all the wings. Sometimes, because of scale, the
wings in the image are thin and cause part segmentation
difficulties. Hence, PLASTIQUE has an unwanted sensi-
tivity to scale. Furthermore, the external outline often does
not enclose all the wings because edge detection separates
the wings from the fuselage. By solving these issues, the
performance of PLASTIQUE could be significantly im-
proved.

Fig. 8. Precision vs recall average for all queries when matching
is conducted with no criteria and with a combination of criterion
1 and 2.

Globally, when observing Fig. 8 and Fig. 9, the results
show that part-based models should not be neglected in
image retrieval applications. First of all, even though not
perfect, the current implemented algorithms can be ap-
plied for retrieving some types of objects, and this at the
object level. Next, our method can be further improved by
enhancing some modules, for example outline extraction.
The outline extraction algorithm used is very simple. It
could be easily improved. This way, object with holes or
objects like airplanes could be segmented with more suc-
cess.

Fig. 9. Precision vs recall for the objects individually.
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Part-based object models could be used in a special-
ized module in an image retrieval software, or in combina-
tion with other modeling approaches. For example, the
image retrieval software of [5] has a module specialized
for textures and another for shapes. Why not, a module for
part-based objects ? Also, used in combination, part-based
modeling of objects could improve the retrieval of some
type of images where other image models fail.

Another advantage of our part-based object model is
that it allows formulating queries by drawing the outline
of an object. Fig. 10 shows the results of a query formu-
lated in this way using PLASTIQUE. The sketch is drawn
by adding straight line segments and circular arcs.

Fig. 10. Best 16 similar images obtained from a sketched query.

Conclusion

This paper has presented a 3D part-based method to
model and match images in databases. This method allows
images to be matched where objects have deformations or
are seen from different viewpoints. It builds models di-
rectly from a single image. This is an important advantage
as a single copy of an object can be matched without the
need of explicitly building a model for each object.

Experiments demonstrate the abilities of our method,
as PLASTIQUE successfully matches deformed objects
and objects seen in different viewpoints. Current results
show that PLASTIQUE is not as successful at matching
different classes of objects. However, these results show
that the method of PLASTIQUE has very good potential.

Analysis of the precisions for different recall values
shows that our method can be further improved by
extracting the internal outline of object and by improving
segmentation of thin parts and outline extraction. These
two issues will be the subject of future efforts. Additional
experiments using more objects are currently underway.
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