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Abstract 
 

This paper proposes a new 2D segmentation method 
for MR shoulder images. Due to the significant length of 
the image sequences, we aim at minimizing the user 
intervention in the segmentation process. Our method 
integrates region and edge information in a coherent 
manner. In fact, the edge information is used in the 
definition of an adaptive similarity measure for iterative 
pixel aggregation. The seeds for the region growing 
process are defined automatically, which is essential for 
processing long image sequences with variable average 
brightness. Moreover, the proposed segmentation 
approach implements parallel region growing processes, 
and allows for dynamic region merging at successive 
iterations. To assess the performance of the proposed 
approach, we followed a standard methodology used for 
validating 2D segmentation, as well as a quantitative and 
qualitative evaluation of the 3D shoulder model 
reconstructed from the segmented image sequences.  
 
 

1. Introduction 
 

The visualization of musculoskeletal structures is a 
powerful tool for diagnosis, surgical planning, and post-
operative evaluation.  The recent developments in the 
technology of magnetic resonance image acquisition 
systems have opened interesting opportunities for the 
study of shoulder pathologies as well as for the 
assessment of the rehabilitation process. Specifically, the 
open-field architectures of MR systems with horizontal 
and vertical access (see Figure 1) allow for the study of 
the shoulder complex in different key positions during 
arm elevation and abduction.  

Prior to the 3D reconstruction of the anatomical 
structures from 2D image sequences, a segmentation 
process must take place in order to identify the region of 
interest (e.g. bony structures, tendons, ligaments, 
calcifications etc.).  In the context of the musculo-skeletal 
imagery, the segmentation of the bony structures 
constituting the shoulder complex must be highly 
accurate, since the intra-structural distance is an important 
factor for the diagnosis of pathologies such as the rotator 
cuff disease and the shoulder impingement [1]. 

The main goal of our work is to implement an 
automated segmentation algorithm of 2D MR images of 
the shoulder.  The result of the slice segmentation will be 
further used to reconstruct a 3D model of  the shoulder 
and to analyze the evolution of inter-structural distances 
during arm elevation and abduction.   
 

 
 

 
 
Figure 1. Open-field architectures of interventional 
magnetic resonance systems allowing horizontal and 
vertical access for imaging and image-guided 
interventions.  



 2

Since our approach is task-oriented, we were strongly 
motivated to investigate the specific features of the 
functional magnetic resonance images of the shoulder 
complex. A list of the main relevant features  for our 
research is following. 

a) The bony structures are not textured, and their 
appearance is dark and homogeneous in T1-
weighted MR images.   

b) The structure-background transition is rather 
smooth, which results in blurred boundaries of 
the regions of interest in the image. This 
phenomenon, called the partial volume effect [2], 
is caused by the finite thickness of the slices and 
is always present in volumetric medical imaging.   

c) The average brightness exhibits a significant 
inter-slice variance during the same MR 
sequence. Due to this variability and to the large 
number of images contained in one MR 
sequence, standard segmentation approaches 
based on user-specified thresholds are not 
recommendable. 

d) The complex morphology of the bony structures 
involved in the musculo-skeletal shoulder 
complex prevents from performing  3D 
segmentation, since the number of compact 
regions may vary from one slice to the next.   

Considering the previously mentioned features, this 
paper proposes a new 2D segmentation method for MR 
shoulder images involving minimal user interaction. Our 
method integrates region and edge information in a 
coherent manner. The proposed segmentation technique 
performs a parallel region growing process using an 
adaptive edge-based similarity measure. 

The rest of the paper is organized as follows. Section 
2 briefly reviews the literature on segmentation of 
medical images highlighting recent research on the 
development of hybrid methods.  Section 3 describes the 
proposed approach.  Section 4 presents the results as well 
as their validation.  Finally, Section 5 draws the 
conclusions and presents future work directions.         

 
2. Background 

 
Since the accurate detection of the region of interest 

is a central problem in medical applications, a large 
variety of segmentation algorithms are dedicated to 
specific types of medical images. We have identified four 
main types of segmentation techniques suitable for 
volumetric medical images.  

Threshold-based approaches are usually semi-
automatic and classify pixels with respect to brightness 
information [3][4]. These techniques present a high inter-
observer variability if the threshold is specified by the 
user.  In the case of automatic thresholding, the image 
histogram must contain separable modes, modeled as 
Gaussian distributions. There is a pairwise 
correspondence between the modes of the histogram and 
the classes detected in the image.   

Boundary-based methods use  gradient filters to 
detect inter-class separation boundaries [5].  In volumetric 
medical images, partial volume effect results in structures 
with blurred edges.  Therefore, the edge detection process 
for the structure of interest may be incomplete. 
Postprocessing using contour closing approaches is 
possible [6], but not really practical due to the  high-order 
computational complexity of these techniques. 

Region-based methods perform pixel aggregation 
around user-specified seeds using homogeneity and 
adjacency criteria [7]. Since region growing algorithms 
are iterative, an additional convergence criterion  must be 
specified [8]. Depending on the task at hand, this criterion 
may be expressed as a maximal acceptable difference 
between the brightness of the candidate pixel and the 
average brightness of the grown region, or may be related 
to the size and shape of the region. Region growing 
techniques are often used in medical imaging for the 
segmentation of homogeneous structures. In addition,  
user-based seed specification allows information to be 
extracted about the localisation of the region of interest in 
complex images where multiple anatomic structures are 
visible. 

Recently, task-oriented hybrid methods have been 
developed, aiming at an optimal combination of the  
advantages offered by the three previously mentioned 
basic approaches. The hybrid segmentation method 
described in [9] combines local adaptive thresholding 
with region growing for the detection of skeletal 
structures in CT image sequences. This method requires 
user interaction as well as continuous input image 
sequences, with no missing slice and a minimal slice 
thickness. The hybrid method presented in [10] combines 
adaptive region growing with a homogeneity model.  
Their algorithm is rather slow, consisting in two steps: 
first, the homogeneity criteria is learned from the global 
image appearance, and second, the region of interest is 
grown around a user-specified seed pixel. A segmentation 
technique for 2-D interventional MR images of liver 
tumours is presented in [11].  This technique integrates 
edge and region information in order to detect textured 
liver tumours with blurred boundaries of non-uniform 
sharpness. 

The following section proposes a new hybrid 
segmentation method combining edge detection and 
region growing.  The edge information is used for the 
specification of a convergence criterion in the iterative 
pixel aggregation process. 
 

3. Proposed approach 
 

Our work is focused on the development of a 
segmentation approach for interventional MR images of 
the bony structures in the shoulder complex. The database 
contains three types of parallel planar image sequences 
corresponding to three different orientations of the 
reference plane : saggital, axial and coronal respectively. 
The morphology and global appearance of the bony 
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structures varies significantly in different planes, as 
shown in Figure 2.  

 Due to the significant length of the image sequences, 
we aim at minimizing the user intervention in the 
segmentation process. Moreover, heavily user-dependent 
segmentation algorithms yield unstable performances, due 
to the large variability of the users’ ability to perform a 
correct identification of the structures of interest in the 
image to be segmented. The pre-processing phase of our 
approach gives more details about the amount of 
information requested from the user.  
 

 
Figure 2. Relevant samples of MR shoulder images 
corresponding to three standard orthogonal views : 
axial, saggital, and coronal. 
 

3.1. Selection of the region of interest 
 

A user-friendly interface is designed for the selection 
of a rectangular region of interest (ROI) in the image. 
This interface allows the user to scan the entire sequence 
at the desired speed, to pause for a more thorough image 
examination and finally to draw a rectangular region 
framing the structures of interest throughout the entire 
sequence.  The ROI is drawn only on  the first  image of 
the currently analyzed sequence and automatically 
mapped afterwards on every subsequent image belonging 
to the same sequence. 

It is worth mentioning that the region of interest only 
partially encloses the bony structures involved in the 
shoulder complex, since the medical diagnosis is based  
on the analysis of the central zone of the shoulder 
complex. As shown in Figure 3, the inferior part of the 
scapula is left outside the ROI. Moreover, the dimensions 
of the ROI may vary from one view to another, but 
remain invariant for all images belonging to the same 
sequence. 

 

 
Figure 3. The ROI is enclosed in the white rectangle 
superposed on each image belonging to the same 
sequence.  
 

3.2. Noise reduction using the Wiener 
filter   
 

The image acquisition process introduces an 
undesirable component that is uncorrelated with the signal 
carrying the relevant information. This component is 
referred to as random noise. Random noise is an 
important limiting factor in MR imaging. It is introduced 
early on the signal generation and detection stage and is 
then processed in the image reconstruction stage.  

It is well known that Wiener filtering performs well 
for image restoration in a noisy environment [8]. This 
approach integrates the degradation function associated 
with the signal acquisition and the statistical features of 
the noise occurring in the reconstruction process, in order 
to increase the signal-to-noise ratio (SNR).  The Wiener 
method is founded on modelling both the uncorrupted 
image and the noise as random processes, and aims at 

finding an optimal estimate f̂ of the image f. This 

optimal estimate is computed by minimizing the mean 

square error between f̂  and  f. 
First, the local mean and variance around each pixel 

have to be estimated. For the estimation process we 
consider a sliding square window of size 5x5 in order to 
be sequentially centered at each pixel location in the 
image. The size of the window was selected according to 
a qualitative estimation of the global homogeneity of the 
sequences in the database. The estimated local mean and 
variance are computed as follows : 
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where ( )00 j,i is the current location in the image, V0 is 

the 5x5 neighbourhood centered on ( )00 j,i and I is the 

image intensity function. 
Since we do not have any knowledge about the statistical 

noise distribution, we compute the noise variance 2
nσ  as 

the average of all the local estimated variances. 
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where N and M are the dimensions of the rectangular 
region of interest. 
Thorough testing on the image database has proven the 
efficiency of a hybrid, threshold-based filtering approach. 
This approach works on a pixel-by-pixel basis and 
considers two alternatives :  

a) if the local variance ( )j,i2σ is lower than the 

noise variance 2
nσ , then the filtered intensity 

value is set to the local mean ( )j,iµ ; 

b) if the local variance exceeds the noise variance, 
then the Wiener filtering approach is 
implemented.  

Thus, the intensity function of the filtered image has the 
following expression : 
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where 

- N,j,M,i 11 ==   

- I(i, j) and I’(i, j) are the intensity functions of the 
original and filtered images respectively. 
 

 
Figure 4. Left column-original images; right column-
filtered images 

 
Figure 4 shows the result of the filtering phase for axial, 
coronal, and saggital image samples respectively. The 
visual examination of these images proves that the global 
appearance of the structures of interest does not change 
much. However, the intra-structural texture is more 
homogeneous and the noise in the background is reduced 
as well. 
 
3.3. Edge detection 
 
The edge detection aims at an accurate extraction of the 
contours corresponding to the bony structures in the 
image.  In a first step, Sobel operators [11] are used to 
compute the horizontal and vertical first-order image 
derivatives.   
 

-1 0 1  -1 -2 -1  I1 I2 I3 
-2 0 2  0 0 0  I4 I5 I6 
-1 0 1  1 2 1  I7 I8 I9 

                 a)                      b)                             c) 
Figure 5. a) Sobel mask for computing the horizontal 
derivative; b) Sobel mask for computing the vertical 
derivative; c) Labelling of the pixels to be convolved 
with the masks.   
 
The convolution of the 3x3 Sobel masks (see Figure 5) 
with the original image generate one image for the 
horizontal derivative (Bx) and one image(By)  for the 
vertical derivative, as follows : 
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Since the two Sobel masks slide over the entire image, the 
values of the first-order partial derivatives are computed 
in a pixelwise manner.   
The magnitude of the gradient conveys local information 
about the strength of the edges. The magnitude of the 
gradient is defined as: 

( ) ( ) ( ) N,j,M,ij,iByj,iBxj,i 11     22 ==+=∇   (7)
   
While low-magnitude edges correspond usually to intra-
structural texture, high-magnitude edges are more likely 
to identify, at least partially, with the contours of the bony 
structures.  
High-magnitude edges are selected with respect to a 
threshold t1, which represents the average value of the 
gradient magnitude over the image: 
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The extraction of high magnitude edges yields a binary 
image containing rather thick contours. This result is 
mainly due to the partial volume effect (PVE) present in 
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magnetic resonance images and caused by the finite slice 
thickness during the acquisition process. This artifact 
results in smooth intensity transitions between structures 
exhibiting very different proton densities. The opposite 
effect may also occur locally, meaning that the transition 
may be so smooth that no boundary is detected between 
two different structures.  
Our approach shrinks ‘thick’ edges until obtaining one-
pixel width contours. Only pixels belonging to the initial 
‘thick’ edge and representing either horizontal or vertical 
local maxima of the gray-level gradient magnitude are 
preserved in the final one pixel width contour. The 
decision of choosing between the horizontal and the 
vertical orientation is made with respect to the relative 
strength of the two derivatives at each pixel location. Our 
shrinking approach is expressed in the following equation: 
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where C is the binary image containing one pixel-width 
contours, Bx and By are the gray-level images 
corresponding to the horizontal and vertical first-order 
derivatives, and ∇ is the gray-level image representing 
the total gradient magnitude. 

Our thinning approach preserves the connectivity of 
the edges contained in the initial thick structures. 
However, the contours in the resulting image C are not 
closed (see Figure 6), due to local disconnections 
generated by the partial volume effect. In order to be able 
to perform an accurate segmentation of the regions of 
interest, we integrate the proposed contour detection with 
a region-growing method. This method will be described 
in the next section. 
 

         
Figure 6. Contour images resulting after edge 
detection 
 

3.4. Region growing 
 

3.4.1 Seed specification 
Region growing techniques are bottom-up methods 

and consist in pixel aggregation around an initial set of 

seed pixels. The pixel aggregation process iteratively adds 
to the region the neighboring pixels satisfying a similarity 
constraint, and stops when no candidate pixel satisfies this 
constraint. 

The correct specification of the seed pixels is 
essential for the success of the approach. Choosing the 
wrong seeds may compromise the following process, 
since the similarity of the pixels to be aggregated is first 
computed with respect to the seed. 

Our approach performs an automatic histogram-based 
selection of the seeds. The bony structures of interest in 
shoulder T1 MR images are homogeneous and darker 
than the surrounding tissues. Moreover, the central part of 
the structures is usually darker than the periphery.  Our 
approach computes the global intensity histogram of the 
rectangular region of interest defines the seeds as pixels 
with intensity values belonging to the 5% inferior range of 
the histogram.  The mathematical expression of this 
condition is as follows: 
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where S(i,j) is a binary image containing the seed pixels. 
Figure 7 shows examples of seed images corresponding to 
the axial, saggital and respectively coronal sequences. 
 

 
Figure 7. Binary images containing the seed pixels for 
the region growing algorithm 
 

3.4.2. Labelling of disjoint and compact 
regions 

As shown in Figure 7, most of the seed pixels are 
distributed in small sized regions.  Therefore, a labelling 
of compact seed regions is performed prior to the 
beginning of the pixel aggregation. The compactness of 
the seed regions is evaluated with respect to the 4-
connectivity of adjacent pixels. After the initial labelling 
process, a set of Rn compact and disjoint regions, 

Ni ,1= is generated. 
 

3.4.3. Defining the convergence criterion 
As for the seed specification, the convergence criterion is 
essential for the success of the region growing process. 
Usually, this criterion is a function related to a similarity 
threshold computed between the currently evaluated 
candidate and the corresponding instance of the growing 
region. The iterative pixel aggregation algorithm for a 
given labelled region stops when there is no candidate 
pixel that satisfies the similarity threshold. 
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We propose a new definition for the convergence 
criterion based on an adaptive edge-based similarity 
measure. For each labelled growing region Rn, a list Ln of 
pixels containing relevant edge information is created as 
follows: 
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The list Ln contains contour pixels belonging to the 

labelled region Rn as well non-contour pixels adjacent to 
Rn and having a contour pixel in their V4 neighbourhood. 
The inclusion of the non-contour pixels in the list allows 
us to handle the local disconnections in the contour 
image.  

The lists are sorted in ascending order with respect to 
the intensity of their elements. This sorting operation 
allows the similarity threshold to be set to the median 
intensity value in the ordered list Ln. The proposed 
similarity measure is consistent with the specific 
appearance of the MR shoulder images. Thus, the 
peripheral zone of the bony structures is always brighter 
than the centre. Consequently, the defined similarity 
threshold is updated at each iteration of the region 
growing process.   
 

3.4.4. Insertion of the best candidate 
At a given iteration of the pixel aggregation, only one 

pixel is inserted in every labelled region of the image 
respectively. This pixel represents the best candidate 
among all current candidates image. To be a candidate, a 
pixel must satisfy the following conditions: 
 

1) It does not already belong to a labelled region. 
2) It is adjacent to an instance of a labelled region 

with respect to the 4-connectivity.  
3) The convergence criterion is not yet satisfied. 

 
For each labelled region, an independent list of 

candidates is created.  The best candidate is the one 
having the lowest intensity value. If two candidates have 
the same intensity but one of them belongs to an edge in 
the binary contour image C, the non-edge candidate is 
chosen as the best candidate.  This decision is coherent 
with the previously defined edge-based convergence 
criterion, and prevents the premature ending of a labelled 
region growing process. 

The pixel aggregation processes are parallel and 
independent for every labelled region. However, the 
iterative evolution of the processes may result in the 
merging of one or more labelled regions. Moreover, this 
merging phenomenon is predictable, since at the initial 
step of the process, every bony structure in the image was 
represented by a set of disjoint seed regions. At the 
convergence of the region growing algorithm, we expect 
to obtain a pairwise correspondence between the bony 
structures present in the image and the labelled regions.  

If merging of two regions occurs at a given iteration 
of the pixel aggregation process, the two regions will 

receive the same label for the next iteration and will be 
further considered as one region. Consequently, the 
number of labelled regions decreases while advancing in 
the pixel aggregation process. After performing the 
inclusion of the best candidates in the corresponding 
labelled regions, the similarity edge-based threshold for 
the next iteration is computed using the updated list Ln.  

The global convergence of the parallel region 
growing algorithm is reached when every local 
convergence criterion for the labelled regions is satisfied. 
As it was previously mentioned, the final number of 
labelled regions is equal to the number of bony structures 
present in the image.  Figure 8 shows examples of 
segmentations results for axial, coronal and saggital slices 
respectively.  

 

 
Figure 8. Segmentation results. The regions obtained 
after the global convergence are highlighted in green 
and superposed over the original images. 
 
 

4. Results 
  

The database for this study contains 20 T1-weighted 
functional magnetic resonance sequences from three 
different views of the shoulder: axial, sagittal and coronal.  
The average length of a sequence is of 30 images.  The 
images are stored in an uncompressed format and contain 
256 gray levels.  The size of the images is 256x256 pixels, 
while the intra-slice pixel resolution is of 1.25 mm. The 
value of slice thickness is set to 7 mm, which is a 
reasonable trade-off between the strength of the partial 
volume effect and the temporal extent of the acquisition 
process.     

The images were acquired on General Electric Sigma 
Horizon open-field MR system at the Intervention 
Magnetic Resonance Imaging Unit of the Centre 
Hospitalier Universitaire de Québec (CHUQ). Reference 
segmentations were available for every sequence in the 
database.  

In order to evaluate the performance of the proposed 
segmentation approach, we followed two procedures. The 
first one is a standard methodology used in the validation 
of 2D segmentation techniques [12]. The results obtained 
by our approach were compared to the manual 
segmentation performed by a radiologist. Conventional 
editing tools in a web-based graphics custom-made 
interface allowed for a rapid information exchange with 
the radiology group.  

Let us consider S, a compact object generated with 
our segmentation approach and R, the reference object 
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enclosed by the manually edited contour. The surface 
overlap metric in [12] performs a pairwise comparison of 
two binary segmentations by relative overlap. Images are 
analysed in a pixelwise manner to calculate the total 
number of false positive, false negative, true positive and 
true negative pixels respectively.  

Let NP be the number of false positive pixels, NN  the 
number  of  false negative pixels, NR the total number of 
reference pixels, and NS the total number of subject pixels. 
We considered the following correspondence measure: 

( )
SR

PN

NN

NN
R,SC

+
+

−=1                                                (12) 

with PRNS NNNN +=+                                          (13)    (5.2) 

This measure gives a score of 1 if subject S and reference 
R are identical and 0 if Φ=RS I . 

Figure 9 shows a graphical representation of the 
correspondence measure computed for 25 images in an 
axial sequence. This representation highlights the high 
quality of the results obtained by our approach. Moreover, 
the average value of the correspondence measure 
computed over the entire database is 90.11%. 

 
Figure 9. Correspondence measure between automatic 
and manual segmentations 
 

The second evaluation procedure was performed in 
order to assess the quality of the 2D segmentation results 
for the further step in the project, namely the 3D 
reconstruction of the shoulder complex. Figure 10 shows 
a 3-D model of the shoulder reconstructed from an axial 
sequence by using the open-source software 3d Slicer 
[13]. In order to obtain an accurate 3D model, the 2D 
segmentations used as input data have to be very accurate 
as well. The physical therapists involved in our research 
project provided us with qualitative as well as with 
quantitative assessments of the reconstructed shoulder 
model. From a qualitative point of view, the degree of 
detail in the model is quite satisfactory. The concavity of 
the glenoid cavity, the convexity of the humeral head, the 
orientation of the acromion etc. were judged as conform 
with the appearance of real anatomic structures. 

The quantitative assessment of the shoulder model was 
performed by computing the minimal 3D acromio-
humeral distance. This computation was implemented in 
Polyworks, a software developed by Innovmetric Inc. and  
dedicated to the inspection of 3D models (see Fig. 10 c). 
The average error for the 20 models corresponding to the 
sequences in our database respectively was 0.56 mm, 
considering as reference the average value of 5mm 
corresponding to the normal acromio-humeral distance in 
healthy patients.  
 

 
a) 

 
b) 

 
c) 

Figure 10. a) sample of the 2D segmented sequence of 
axial images corresponding to the 3D model; b) 3D 
reconstructed model of the shoulder complex : 
scapula(green) and humerus (blue) c) computation of 
the acromio-humeral distance in Polyworks.  
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5. Conclusion and future work 

 
In this paper, we propose a new automatic 2D 

segmentation technique for the detection of the bony 
structures of the shoulder in functional magnetic 
resonance images. As shown in the previous section, our 
method yields excellent performances when compared to 
manual segmentations performed by radiologists. 
Moreover, the sequences of segmented images are 
suitable for the reconstruction of an accurate 3D shoulder 
model. This model will be used in the study of 
biomechanics and arthrocinematic of the joint shoulder 
complex in patients with shoulder pathologies such as 
instability and impingement.  

We believe that the original contribution of our 
approach consists in a coherent integration of edge 
detection and region growing. In fact, the edge 
information is used in the definition of an adaptive 
similarity measure for iterative pixel aggregation. The 
seeds for the region growing process are defined 
automatically, which is essential for processing long 
image sequences with variable average brightness. 
Moreover, the proposed segmentation approach 
implements parallel region growing processes, and allows 
for dynamic region merging at successive iterations.  

Our approach is task-oriented and handles well the 
specific features of MR shoulder images. However, it is 
easily adaptable for the segmentation of other types of 
volumetric medical images. Indeed, the proposed 
technique allows for an accurate extraction of other 
anatomic structures with complex shapes and a reasonable 
degree of homogeneity. 

Future work will concentrate on texture analysis for 
the segmentation of soft tissues involved in the 
osteoarticular complex of the shoulder (muscles, tendons, 
ligaments, and capsule) in order to pursue the computer 
vision- based study of shoulder pathologies.  
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