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@ Questions tackled in this tutorial
» What is supervised learning and what are its main issues?
» Where is EC successful for doing supervised learning?

o This tutorial is:
» A short presentation of relevant notions related to supervised learning

» A selection of various approaches for evolutionary supervised learning
» A proposal on how EC can successfully achieve or support supervised

learning

o This tutorial is not:
» An exhaustive survey on the application of EC to supervised learning

» On how to improve EC with machine learning techniques (e.g.

surrogate models)

o Supervised learning
» Inferring a model from observational data
» Main objective: to produce models that generalize
» Two types: classification and regression

» Wide range of applications
* Pattern recognition, medical diagnosis, irregularity detection,

forecasting (e.g. finance, weather), high-level control, etc.

o Evolutionary computation
» Bio-inspired meta-heuristics
» Black-box optimization
* Derivative-free
* Non-convex objectives
* Non-conventional representations

o Supervised learning presents many challenges that can be solved
through optimization
» How can evolutionary computation be useful to improve supervised

learning?
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o Overview of supervised learning
» Presentation of supervised learning
» Classification and regression
> Model selection and generalization
o Applying EC to supervised learning

» Feature selection and construction

» Model optimization
» Ensemble methods
» Learning methodologies

o Perspectives and concluding remarks
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o A credit company wants to estimate automatically the risk level of its
clients

o Available measures : client incomes (x1) and client savings (x2)
o Database of clients tagged as high risk (red) or low risk (green)

@ Machine learning consists in using computers for optimizing an
information processing model according to some performance
criteria based on observations, be it data examples or past
experiences

o When we know the good processing model to use, there is no need to
do learning!
o Machine learning can be useful when:

» We do not have expertise on the problem (e.g. rover on Mars)

» We have an expertise, but cannot explain it (e.g. face recognition)

» Solutions to the problem are changing over time (e.g. packet routing)
» Solutions must be personalized (e.g. biometric identification)
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@ Goal: to infer a general processing model from specific
observations

» The model must be a correct and useful approximation of the
observations
o Observations are cheap and often available in high volume; knowledge
is rare and expensive

o Example in data mining: link customers transactions to their buying
behaviours
» Suggestion of similar items on Amazon (books, musics), Netflix
(movies), etc.
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o Supervised learning

» Goal: to learn a projection between observations X as input and

associated values Y as output

o Mathematical model

>y =h(x|0)

> h(-): general model function

» 0: model parameters

o To optimize a model from observations according to a performance
criterion

o Statistical view: to infer from samples

o Computing view: to build algorithms and representations efficient at
generating and evaluating the models

o Engineering view: to solve problems without having to specify or
customize manually the processing models

Y
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o Y is discrete and corresponds to class labels
o h(-) is a discrimination function

@ @ High risk
050 * * % Low risk
[ ]
0.45 L *
*
0.40
° *
& *
£ 035 ]
] *
0.30
025
[ ]
020 [
PY [ ]
013 -
.15 020 0.25 0.30 0.35 0.10 0.45 050 055

ORL database from AT&T Laboratories Cambridge:
http://waw.cl.cam.ac.uk/research/dtg/attarchive/facedatabase . html

o Pattern recognition
» Face recognition: to recognize peoples notwithstanding the variations
(pose, lighting, glasses, make-up, hairs)
» Handwritten character recognition: to recognize characters
notwithstanding the different writing styles
» Speech recognition: temporal dependencies, use dictionaries of valid
words/structures

o Decision support in health: to propose diagnosis from the symptoms

o Knowledge extraction and compression: to explain large databases
with simple rules

o lrregularity detection: to identify frauds, intrusions, etc.
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MNIST database of handwritten characters from Y. LeCun and C. Cortes: http://yann.lecun.com/exdb/mnist/



@ Observations:
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o Y is a real value

@ h(-) is the regression function

o Example: to forecast sale price
of used car according to its
mileage

» Observations: mileage (x)
» Forecast: sale price (y)
o Applications to forecasting
» Finance
» Weather

o Applications to high-level control

» Steering wheel of an
autonomous car (CMU
NavLab)

» Joints of a robotic arm

o h(x|0): parametric
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o Noise in the data

» Lack of precision
» Labelling errors
» Latent measures

o At equal performances, prefer the simplest model

» Easier to use and to train (time and space complexity)
» Easier to explain (intelligibility)
» Generalize better (Occam's razor)



o First order with one variable:

e h(x|wi,wo) = wix + wo
Order 3
Order 6

@ Solution with partial
derivatives on empirical error

@ Solutions with 1st, 3rd, and
6th order polynomial

» 6th order is almost

* “perfect”, but generalize

R R R badly

e » 3rd order capture better
the data than 1st order
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o A trade-off must be made between three elements:

» Hypotheses complexity, C
» Training dataset size, N
> Generalization error (on new observations), E

o When N increases, then E decreases
o When C increases, then E decreases for a while, and then increases

o Bias-variance trade-off

» High bias: model often off target (too simple)

» High variance: unstable model, does not capture the underneath
phenomenon (too complex)

» Reducing bias usually increases variance, and vice-versa

» Mean square error is a composition of bias and variance

E [(r - h)z] = (r — E[h])? +Var(h)
—_————

bias®

o Supervised learning is an ill-posed problem
» The observations are not sufficient to provide an unique solution

o We thus need an inductive bias, by making assumptions on the space
of hypothesis (function h(x|0) to use)
@ Main objective: generalization
» We need a model that perform well on new data
» Overfitting: hypotheses h(x|#) are too complex given the data
» Underfitting: hypotheses h(x|#) are too simple given the data
o Regularization: include a model complexity penalty in the optimization
objective

oJo,

High bias and variance High bias, low variance

oJo,

Low bias, high variance Low bias and variance




@ To estimate generalization error, we need data unused during training
o Classical approach, partition the dataset
» Training set (50%)
» Validation set (25%)
> Test set (25%)
@ Usual procedure
Q@ Generate hypotheses h(x|6) from the training set
Q Evaluate generalization error of these hypotheses on the validation set
and return the one that minimizes it
© Report as final performance the results on the test set
o With small datasets, there are other approaches
» Partition dataset in K folds
» Use K — 1 folds for training and the remaining fold for validation
» Repeat K times with all possible combinations and report the average
validation error
» Extreme case: K is equal to the dataset size (one training per data)
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o Representations
» Parametrized hypotheses: h(x|0)
» Instances, hyperplanes, decision trees, rules sets, neural networks,
graphical models, etc.
o Evaluation
» Empirical error: E(6|X) = & N (rth(xt]0))
» Recognition rate, precision, recall, square error, likelihood, posterior
probability, information gain, margin, cost, etc.
o Optimization
» Procedure : 6* = argminyy E(0|X)
» Combinatorial optimization, gradient descent, linear/quadratic
programming, etc.
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o Combinatorial optimization (bit strings and permutations)
» Data selection (e.g. prototypes)
» Feature selection
» Members selection in ensembles
o Real-valued optimization
» Hyperparameter tuning
» Unconventional performance measure
» Prototype construction
o Genetic programming
» Symbolic regression
» Feature and classifier model
» Distance measure and kernel function
o General approaches
» Member production for ensemble
» Dynamic evaluation data selection (e.g. competitive coevolution)
» Learning methodologies and data handling
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o Curse of dimensionality

» Adding one dimension increases exponentially the input space

» 100 equidistant data in 1D = 10%° data in 10D for the same sampling

density
» High dimensionality: increased time and space complexity

o Feature selection (Guyon and Elisseeff, 2003)

» Objective: to find a subset of K input variables among the D original
variables (features) while limiting the impact on performance

» Number of possible subsets: 2

10 _ 50 ~ 10 100 ~ 20
(1) (D) =100 (1) <

» Combinatorial optimization problem

Feature
selection and
construction

Member
generation and
selection

Hyperparameter
tuning

!
!
!

Feature Classification / Decision /

Segmentation ) ) L
extraction regression combining
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Cross-cutting elements:
- Learning methodologies
- Coevolution

Prototype
selection and
construction

Symbolic model optimization (e.g.
regression function, distance, kernel)

o Filter approach for feature selection

» Use a statistical measure to evaluate the link between the features and
the labels (e.g. mutual information)

» Usually very fast as the statistical measure is cheap to compute

» The statistical measure may have little to do with the learning method
used

o Wrapper approach for feature selection
» Train a model for every feature subset candidates
» Expensive, as a complete training is done for each fitness evaluation

» Will capture all complex interactions between the features and the
method used



o Feature selection has been tackled with EC since a long time
(Siedlecki and Sklansky, 1989)
o Multiobjective bit string GA is obvious for that (Emmanouilidis,
Hunter, and Maclntyre, 2000; Oliveira et al., 2003)
» Each bit represents whether a feature is selected
» Evaluation often done following a wrapper approach
» Optimizing the performance (e.g. minimizing error rate) while
minimizing the number of features selected
@ Many have used EC-based feature selection for producing classifiers
» Acting on the features is algorithm-independent and may influence the
classifiers generated
» Particularly useful for generating a diverse pool of classifiers (see later)

(e Gagne (U Laval) [T EC for Supervised Learning ||| GECCO 2013 Tutorial  33/68
o As with feature selection, bit string GA is good for prototype selection
(Derrac, Garcia, and Herrera, 2010)
» Each bit identify whether an instance is used as prototype
» Kuncheva and Bezdek (1998) used a single objective with a weighted
sum of performance and number of prototypes

» Require however to select from a relatively small pool of instances
(when representing a selection as a bit string)

o Simultaneous prototype and feature selection (Kuncheva and Jain,
1999)

o k-Nearest Neighbour (k-NN) classification
» Assign class label according to the majority label of the k nearest
instances
» Classical approach: select nearest instances in the training set
> No training required, testing complexity of N x M (N: train set size,
M: test set size)
o Reducing the instance pool size by prototype selection
» Removing redundant and noisy instances
» Reduce testing time and space complexity

» A variety of heuristics has been proposed (Garcia et al., 2012; Wilson
and Martinez, 2000)

o Another combinatorial optimization problem!
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o Prototype selection: select instances from a pool
» Why not creating new prototypes from scratch!

» Prototype construction might produce smaller but more representative
set of prototypes

o Common approaches for prototype construction

» Clustering the data set (e.g. K-means)
» Learning vector quantization (a kind of supervised K-means)

o Evolutionary prototype construction (Derrac, Garcia, and Herrera,
2010; Kuncheva and Bezdek, 1998)

» Used real-valued algorithm to evolve x values of a given number of
prototypes

» Another approach: sequential optimization, where each run evolves a
bunch of prototypes with Particle Swarm Optimization (PSO) (Nanni
and Lumini, 2009)

» Michigan-style PSO for prototype construction (Cervantes, Galvan, and
Isasi, 2009)



@ Should we optimize the real-valued parameters with EC?
» Optimization in learning often solved through convex optimization
procedure
* SVM: quadratic programming
* Neural networks: gradient descent (backpropagation)
* Variants of Boosting (e.g. LPBoost)
» When convex optimization works well, do not try to beat it with EC
* Convex optimization techniques are well-known, converge usually faster
and/or to better solutions (with guarantees)
o However, real-valued EC has its niches
» Prototype construction
» Hyperparameter tuning
» Unconventional optimization objectives (e.g. non-convex,
non-differentiable)
» Multiobjective optimization
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o ROC curves (Fawcett, 2006)
» x-axis: false positive rate
» y-axis: true positive rate
» Given a real-valued output, position on the curve correspond to a
threshold
» Allow evaluating performance for different types of errors or varying
class balance

o Area under the ROC curve (AUC-ROC)

» Evaluate the capacity to discriminate two classes for all threshold values

> Independent of the class balance

» Strong links with the Wilcoxon—Mann—Whitney statistical test and Gini
coefficient

» Hard to handle by convex optimization methods

o Evolving classifiers using the AUC-ROC as fitness measure (Sebag,
Azé, and Lucas, 2004)
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o Hyperparameters: parameters of the learning algorithm
» Learning rate and regularization coefficient
» Number of hidden layers and neurons
» Number of neighbours
» Parametrization of kernel functions
o Sensitivity to these values varies
» Sometime, ballpark figures are good enough
» In other cases, fine tuning of hyperparameters is required
» For some algorithms, there are complex interactions between
hyperparameters
o Grid search
» Testing all combinations of hyperparameter values
» Efficient for 1 to 3 parameters, using relatively coarse set of values
o Evolutionary algorithms for hyperparameters
» Tuning regularization coefficient (C) and Gaussian kernel covariance
matrix of SVMs with CMA-ES (Friedrichs and Igel, 2005)
» Tuning SVMs with multiobjective GA (TP, FP, and #SV) (Suttorp and
Igel, 2006)



o Atrtificial neural networks often used for classification and regression
» Classical network: Multilayer Perceptron (MLP)
» New trend: deep networks
o Optimizing neural network topologies
» Hyperparameter tuning: optimizing the number of layers and neurons
of MLPs
@ Neuroevolution of Augmenting Topologies (NEAT) (Stanley and
Miikkulainen, 2002)
» Evolve both the weights and topology of the network
» Try to find a balance between fitness and speciation
» Start with simple topologies and develop them incrementally
o In general, neuroevolution has not appeared particularly fit for
supervised learning
» Much better at control/reinforcement learning tasks
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o Introductory example for GP (Koza, 1992)

» Infer an equation in its analytical form from a set of test cases

» Arithmetic operators as branches (e.g. +, —, X, = sin, cos,exp, log)

» Variables of the problem (i.e. x1,...,xp) and constants (e.g.

0,1,m, ERC) as terminals

o Still relatively efficient for doing regression

» Particularly interesting when symbolic equations are requested

» Does an implicit feature selection

o See the GECCO workshop on symbolic regression and modelling

o Genetic Programming (GP) is a natural approach for supervised
learning
» Classification/regression model can be seen as a computer program
» Specifying the GP configuration for evolving the model is
straightforward in many cases
o Evolve variable-length model
» Allow to produce models of varying complexity
» Bloat problem can be fought through regularization, much like what is
done in supervised learning (Amil et al., 2009)
» Models produced are symbolic and intelligible

o Applications of GP to classification (Espejo, Ventura, and Herrera,
2010)
» Feature construction
» Decision trees
» Rule-based systems
» Discriminant functions

o Feature construction

» Creating new features from the existing ones

Usually allow to reduce the input size of the model

Particularly interesting when done through some non-linear mapping
Wrapper and filter methods can be used

o Domain knowledge is usually difficult to obtain

» Building automatically features should help to extract useful
information and use the good representation
o Feature construction with GP
» Make use of symbolic regression to construct features
» Evolve all features at the time (Sherrah, Bogner, and Bouzerdoum,
1997) or one feature constructed at the time (Bot, 2001)
» Multiobjective feature construction with GP (Zhang and Rockett, 2009)

vYyy



o Distance measure: evaluate how dissimilar are two values
» Central component of instance-based classifiers (e.g. k-NN)
» Most common is Euclidean distance, but others are possible
» Using GP to evolve the distance measure of classifiers (Gagné and
Parizeau, 2007)
* Evolve a d(x,y) with vector instructions (i.e. similar to Matlab)
o Kernel function: measure similarity of two data
» Central in SVM and other kernel methods
» Allow mapping the input space in an higher dimension one, without
working explicitly in it (kernel trick)
» Kernels can be a composition of other kernels
» Evolving kernels with GP (Gagné et al., 2006; Sullivan and Luke, 2007)
* Branches and terminals allows to define basic kernels that are combined
through the evolution
* Allow customization of the kernel function to the problem domain
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o Condorcet’s jury theorem (1785)
» Assuming a jury of independent voters who have a probability of
p > 1/2 of making the correct decision
» Jury reaches correct decision asymptotically (with probability of 1), as
jury size increases
» Votes assumed to be independent and identically distributed (i.i.d.)
» Theoretical justification of democracy
o Making ensembles of classifiers/regression functions
» Ensembles are usually more reliable than single classifiers

» Eliminate noise of individual decisions
» Require members to be diversified

o Weak members are sufficient to make ensembles

» No need to obtain ultra high performances, better than 50% (better
than random) is good enough
» Often easier to generate diversity with weak algorithms

Feature
selection and
construction

Member
generation and
selection

Hyperparameter
tuning

Feature Classification / Decision /

Segmentation ) ) L
extraction regression combining

Cross-cutting elements:
- Learning methodologies
- Coevolution

Prototype
selection and
construction

Symbolic model optimization (e.g.
regression function, distance, kernel)

o Bias and variance with ensembles
» hj are i.i.d., with expectation E[h;] and variance Var(h;)

_ L1 1
Eh] = E Z[hf = 7LE[hy] = Efhj]
j=1

- 1 1 1
Var(h) = Var Zzh,- = 5L Var(hj) = | Var(hy)

Jj=1

o Variance decreases as the number of members (L) increases

» With ensembles, we can reduce variance without altering bias
» And so is reduced the mean square error

E [(r - h)2] = (r — E[b])? + Var(h)

bias®



o Ensemble variance, general case

Var(h) = éVa.r (Z hj> = é |:Z Var (hj) + 2 Z Z Cov(hj,h,-):|
J J

Jjoi>j

» Reduce further variance with negatively correlated members
» Square error can be reduced, as far as negative correlation does not
alter bias
o Diversity of responses in ensembles
» Goal when creating ensembles: members are not making mistakes on
the same data
» Extreme case without diversity: L copies of the same member
o Evolutionary ensembles with negative correlation learning (Liu, Yao,
and Higuchi, 2000)
» Make ensemble of neural networks for regression
» Individual networks trained with backpropagation + negative correlation
» Using EC to generate the members of the ensemble

[TC Gagne (U Laval) T EC for Supervised Learning ||| GECCO 2013 Tutorial 49 /68
o Evolving a population of classifiers
» Why not making a ensemble of classifiers, using the population as a
pool?
» Diversity of the population = diversity of the pool?
o Ensemble learning for free with EC (Gagné et al., 2007)

» Using EC to produce a population of classifiers

* Fitness function enforcing diversity by assigning a fixed credit for each
test case

» The ensemble is build by selecting members from the population

* OfFEEL: select the members from the final generation
* On-EEL: build the ensemble during the evolution, incrementally

» Somehow related to Michigan-style algorithms

o Overproduce: generate a varied pool of classifiers
o Select: choose a subset of classifiers from the pool, maximizing a
given measure (performance and/or diversity)
» Feature selection techniques transpose well to member selection
o EC is good for overproduction
» Diversity in the population is a already a desired property of EC
» Diversity measures are often hard to use with convex optimization
» Population of solutions = pool of classifiers
» Generating a diverse pool through evolutionary feature selection
(Oliveira, Morita, and Sabourin, 2006)
o Evolutionary member selection
» Dynamic selection of members at runtime with NSGA-II, according to
the data to classify (Dos Santos, Sabourin, and Maupin, 2008)
» Overfitting cautious member selection methodology relying on
multiobjective GA (Dos Santos, Sabourin, and Maupin, 2009)
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o Bagging: generate passively varied classifiers through random
resampling of training set

o Boosting: produce varied classifiers by modifying sampling weights of
data according to their difficulty
o BagGP and BoostGP (lba, 1999)
» Split the population into subpopulations
» Resample training set for each subpopulation, using Bagging or
Boosting
» Make ensemble with the best individual of each subpopulation
o GPboost: modify weighting of test cases of several sequential GP runs
(Paris, Robilliard, and Fonlupt, 2002)



o Dataset size for evolutionary learning is a concern
» Many individuals evaluated with a large datasets = expensive
computation
» Not all instances need to be used for evaluating all individuals at each
generation
o Dynamic Subset Selection (DSS) (Gathercole and Ross, 1994)
» Evaluate fitness with a training subset of “difficult” instances
» Compute a weight for each training instance according to its age and
difficulty
» Assign a selection probability according to the normalized instance
weight and target training subset size
» Renew subset at each generation

o A variant of DSS has been successfully applied to train GP classifiers
with a dataset of 500000 instances (Song, Heywood, and
Zincir-Heywood, 2005)
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o Discriminate charlatans from competent financial counsellors (Jensen
and Cohen, 2000)
» Ask counsellors to predict whether stock markets will go up or down on
a day
» Request to make prediction for 14 days, a candidate is deemed
competent if he predicts correctly 11 days or more
* A charlatan makes random guesses (50%/50%), so have 2.87%
chances of passing the test
o Does not work for selecting a counsellor among n
> Probability that a charlatan passes the test among n: 1—(1—0.0287)"
* For n = 10, = 25% chances one charlatan will pass the test, for
n = 30, ~ 58% chances
» For high n, almost sure that charlatans will pass the test, even thought
they are not doing better than random guesses
@ Oversearching: searching for solutions in huge model spaces
» By testing too many candidate solutions, may select one that fit well
the training set, but does not generalize well
» Common issue when doing supervised learning with EC

o Competitive coevolution (Hillis, 1990)

» Evolving species with antagonistic goals (i.e. parasite-host model)
» Can reduce significantly the number of test cases for each individual

o Coevolutionary symbolic regression (methods for evolving robust
programs) (Panait and Luke, 2003)
» Host species: symbolic regression with GP
» Parasite species: test cases evolved with real-valued GA
» Good at improving generalization, by renewing test cases at each
generation
o Coevolving nearest neighbour classifiers (Gagné and Parizeau, 2007)
» Species 1: distance measure with GP
» Species 2: prototype selection with multiobjective GA (cooperative)
» Species 3: selection of evaluation data with GA (competitive)
» Competitive coevolution limits greatly overfitting, with reduced
distance measure and prototypes set size
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o Recommendations to avoid overfitting and oversearching (Igel, 2012)
@ Use as much data as possible, to improve training and fitness
evaluation reliability
Q When relevant, use a distinct dataset from the training set for
evaluating the fitness (use an evaluation set)
Q If possible, renew evaluation dataset at each generation
@ Generalization performance must be evaluated on data not used for
computing the fitness (use a validation set)
© Number of evaluations before oversearching should be evaluated, which
is dependent of the amount of data available
O Final results shall be reported on a distinct dataset (use a test set)
o Up to four datasets may be required in a proper methodology
» Training set: to train classifiers
» Evaluation set: to evaluate fitness of individual on new data
» Validation set (a.k.a. final selection set): to select the individual to
retain from an evolution and/or do early stopping
» Test set: to evaluate generalization performances and compare
different algorithms
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o Building representations
» Feature selection/construction
» Distance measures and kernel functions
» Segmentation level of the pattern recognition pipeline
o Building ensembles
» Generating pool of diverse models
» Selecting members for making the ensembles
» Population of models = an ensemble!
o Many optimization challenges in supervised learning
» EC can be very useful where other “classical” methods fail
» Combinatorial optimization
» Multiobjective optimization
» Variable-length and symbolic representations (i.e. GP)

o Optimizing classification/regression models with EC
» Many state-of-the-art models rely on convex optimization methods
(e.g. SVM)
* EC not likely to figure well compared to these approaches
» But EC can achieve excellent results in specific cases
* Prototype selection/construction for instance-based learning
* Hyperparameter tuning, when there is a complex relation among these
(e.g. C and o of Gaussian SVMs)
* Non-convex, non-differentiable performance measure (e.g. AUC-ROC)
Intelligible models (e.g. symbolic regression)

*
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o Dataset size trade-off of evolutionary learning
» Avoid using small datasets
* Learning has moved beyond the few hundreds instances found in most

toy datasets
* With small datasets further partitioning gets difficult

» Big dataset implies long fitness evaluation
* EC is expensive in term of number of candidate solutions evaluated
o Proper supervised learning with EC requires up to 4 datasets
» Training set, evaluation set, validation set, and test set
o Oversearching issue

» Large datasets are required to avoid good performances by chance
» Selecting best-of-run with a validation set
» Validation set good also for early stopping

o Renewing the evaluation set during the evolution
» Competitive coevolution, dynamic subset selection, etc.



@ Deep learning (Bengio, 2009)
» “The biggest data science breakthrough of the decade”
» Techniques to train neural network with many layers (deep networks)
» Several EC techniques can be tackled to develop better network (e.g.
neuroevolution)

o Large-scale learning (Bottou and Bousquet, 2011)

» Big data learning: how to apply efficiently (performance- and
computation-wise) supervised learning to huge databases?

» Implicit parallelism of EC can allow relatively fast processing on parallel
machines, along with some clever data management

o Semi-supervised learning (Zhu, 2007)

» Big databases, with only a small subset of data labelled
» Learn structures from unlabelled data, tag then with labelled one
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