Christian Gagné

Laboratoire de vision et systémes numériques
Département de génie électrique et de génie informatique
Université Laval, Québec (Québec), Canada

christian.gagne@gel.ulaval.ca
http://vision.gel.ulaval.ca/~cgagne

UNIVERSITE

LAVAL

Copyright is held by the author/owner(s).
GECCO’13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.

ACM 978-1-4503-1964-5/13/07.

@ Questions tackled in this tutorial
» What is supervised learning and what are its main issues?
» Where is EC successful for doing supervised learning?

o This tutorial is:
» A short presentation of relevant notions related to supervised learning

» A selection of various approaches for evolutionary supervised learning
» A proposal on how EC can successfully achieve or support supervised

learning

o This tutorial is not:
» An exhaustive survey on the application of EC to supervised learning

» On how to improve EC with machine learning techniques (e.g.

surrogate models)

o Supervised learning
» Inferring a model from observational data
» Main objective: to produce models that generalize
» Two types: classification and regression

» Wide range of applications
* Pattern recognition, medical diagnosis, irregularity detection,

forecasting (e.g. finance, weather), high-level control, etc.

o Evolutionary computation
» Bio-inspired meta-heuristics
» Black-box optimization
* Derivative-free
* Non-convex objectives
* Non-conventional representations

o Supervised learning presents many challenges that can be solved
through optimization
» How can evolutionary computation be useful to improve supervised

learning?
[Tc Gagne (U Laval) TTTTTEC for Supervised Learning ||| GECCO 2013 Tutorial 2/68
o Overview of supervised learning
» Presentation of supervised learning
» Classification and regression
> Model selection and generalization
o Applying EC to supervised learning

» Feature selection and construction

» Model optimization
» Ensemble methods
» Learning methodologies

o Perspectives and concluding remarks

Part |

o A credit company wants to estimate automatically the risk level of its
clients

o Available measures : client incomes (x1) and client savings (x2)
o Database of clients tagged as high risk (red) or low risk (green)

@ Machine learning consists in using computers for optimizing an
information processing model according to some performance
criteria based on observations, be it data examples or past
experiences

o When we know the good processing model to use, there is no need to
do learning!
o Machine learning can be useful when:

» We do not have expertise on the problem (e.g. rover on Mars)

» We have an expertise, but cannot explain it (e.g. face recognition)

» Solutions to the problem are changing over time (e.g. packet routing)
» Solutions must be personalized (e.g. biometric identification)

0.55
0.50
*
PY [}
045 *
*
0.40
L *
& *
< 035 []
3 *
030
025
[}
0.20 []
e
[J
0.13
.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Incomes

If x; > 0.32 and x; > 0.27 then low risk else high risk

@ Goal: to infer a general processing model from specific
observations

» The model must be a correct and useful approximation of the
observations
o Observations are cheap and often available in high volume; knowledge
is rare and expensive

o Example in data mining: link customers transactions to their buying
behaviours
» Suggestion of similar items on Amazon (books, musics), Netflix
(movies), etc.

[CGagné (Uitaval) | ECifor Supervised Learning | GECCO 2013 Tutorial _ 9/68
o Supervised learning

» Goal: to learn a projection between observations X as input and

associated values Y as output

o Mathematical model

>y =h(x|0)

> h(-): general model function

» 0: model parameters

o To optimize a model from observations according to a performance
criterion

o Statistical view: to infer from samples

o Computing view: to build algorithms and representations efficient at
generating and evaluating the models

o Engineering view: to solve problems without having to specify or
customize manually the processing models

Y

Observations Teacher

Z . +

Supervised
system

o Y is discrete and corresponds to class labels
o h(-) is a discrimination function

@ @ High risk
050 * * % Low risk
[]
0.45 L *
*
0.40
° *
& *
£ 035]
] *
0.30
025
[]
020 [
PY []
013 -
.15 020 0.25 0.30 0.35 0.10 0.45 050 055

ORL database from AT&T Laboratories Cambridge:
http://waw.cl.cam.ac.uk/research/dtg/attarchive/facedatabase . html

o Pattern recognition
» Face recognition: to recognize peoples notwithstanding the variations
(pose, lighting, glasses, make-up, hairs)
» Handwritten character recognition: to recognize characters
notwithstanding the different writing styles
» Speech recognition: temporal dependencies, use dictionaries of valid
words/structures

o Decision support in health: to propose diagnosis from the symptoms

o Knowledge extraction and compression: to explain large databases
with simple rules

o lrregularity detection: to identify frauds, intrusions, etc.

RUro N9 XN
O OO LV —

NOowxr LG
N~ oy —-\ &
PRANNIO ~=Jd e
@ o O N S80I\
SLQOoPranQIxNw
6N W™ &~~~ &N
S QRN oW
QN Q& — J o ot & o
%

~

MNIST database of handwritten characters from Y. LeCun and C. Cortes: http://yann.lecun.com/exdb/mnist/

@ Observations:

0.55 T - X
x=| "t
050 * X2
[)
05 e *
* o Class labels:
0.40 [) *

-Ew» et Lo if x is high risk
o 1 0 ifxis low risk
0.25

° @ Set of N observations:
020 L]
e L]
N
13 — t t
iEom om 0w OB om0k oW 0w X = {X Ng }t=1

o Y is a real value

@ h(-) is the regression function

o Example: to forecast sale price
of used car according to its
mileage

» Observations: mileage (x)
» Forecast: sale price (y)
o Applications to forecasting
» Finance
» Weather

o Applications to high-level control

» Steering wheel of an
autonomous car (CMU
NavLab)

» Joints of a robotic arm

o h(x|0): parametric
050 * * Low risk . .)
o® * classification function
0.45) *
wl e * @ 0: specific parametrization to
s * the function
-’iu.sv q N »
- @ 0 = 65: most specific
" hypothesis (blue)
om o ° ' @ 0 = 0g: most general
. ° hypothesis (magenta)
T015 020 0.25 0.30 0.35 0.40 0.45 0.50 0.55

I
[CGegné (Utaval) ECHfor Supervised Learning | GECCO 2013 Tutorial 18 /68
o Noise in the data

» Lack of precision
» Labelling errors
» Latent measures

o At equal performances, prefer the simplest model

» Easier to use and to train (time and space complexity)
» Easier to explain (intelligibility)
» Generalize better (Occam's razor)

o First order with one variable:

e h(x|wi,wo) = wix + wo
Order 3
Order 6

@ Solution with partial
derivatives on empirical error

@ Solutions with 1st, 3rd, and
6th order polynomial

» 6th order is almost

* “perfect”, but generalize

R R R badly

e » 3rd order capture better
the data than 1st order

[CGegné (Utaval) ECforSupervised Learning | GECCO 2013 Tutorial 21/68
o A trade-off must be made between three elements:

» Hypotheses complexity, C
» Training dataset size, N
> Generalization error (on new observations), E

o When N increases, then E decreases
o When C increases, then E decreases for a while, and then increases

o Bias-variance trade-off

» High bias: model often off target (too simple)

» High variance: unstable model, does not capture the underneath
phenomenon (too complex)

» Reducing bias usually increases variance, and vice-versa

» Mean square error is a composition of bias and variance

E [(r - h)z] = (r — E[h])? +Var(h)
—_————

bias®

o Supervised learning is an ill-posed problem
» The observations are not sufficient to provide an unique solution

o We thus need an inductive bias, by making assumptions on the space
of hypothesis (function h(x|0) to use)
@ Main objective: generalization
» We need a model that perform well on new data
» Overfitting: hypotheses h(x|#) are too complex given the data
» Underfitting: hypotheses h(x|#) are too simple given the data
o Regularization: include a model complexity penalty in the optimization
objective

oJo,

High bias and variance High bias, low variance

oJo,

Low bias, high variance Low bias and variance

@ To estimate generalization error, we need data unused during training
o Classical approach, partition the dataset
» Training set (50%)
» Validation set (25%)
> Test set (25%)
@ Usual procedure
Q@ Generate hypotheses h(x|6) from the training set
Q Evaluate generalization error of these hypotheses on the validation set
and return the one that minimizes it
© Report as final performance the results on the test set
o With small datasets, there are other approaches
» Partition dataset in K folds
» Use K — 1 folds for training and the remaining fold for validation
» Repeat K times with all possible combinations and report the average
validation error
» Extreme case: K is equal to the dataset size (one training per data)

Part |l

o Representations
» Parametrized hypotheses: h(x|0)
» Instances, hyperplanes, decision trees, rules sets, neural networks,
graphical models, etc.
o Evaluation
» Empirical error: E(6|X) = & N (rth(xt]0))
» Recognition rate, precision, recall, square error, likelihood, posterior
probability, information gain, margin, cost, etc.
o Optimization
» Procedure : 6* = argminyy E(0|X)
» Combinatorial optimization, gradient descent, linear/quadratic
programming, etc.

[Tc Gagne (U Laval) TTTTTEC for Supervised Learning ||| GECCO 2013 Tutorial 26 /68
o Combinatorial optimization (bit strings and permutations)
» Data selection (e.g. prototypes)
» Feature selection
» Members selection in ensembles
o Real-valued optimization
» Hyperparameter tuning
» Unconventional performance measure
» Prototype construction
o Genetic programming
» Symbolic regression
» Feature and classifier model
» Distance measure and kernel function
o General approaches
» Member production for ensemble
» Dynamic evaluation data selection (e.g. competitive coevolution)
» Learning methodologies and data handling

\ 4
\ 4
\ 4

Feature Classification / Decision /

Segmentation extraction regression combining

(e Gagne (U Laval) T EC for Supervised Learning ||| GECCO 2013 Tutorial 29/68
o Curse of dimensionality

» Adding one dimension increases exponentially the input space

» 100 equidistant data in 1D = 10%° data in 10D for the same sampling

density
» High dimensionality: increased time and space complexity

o Feature selection (Guyon and Elisseeff, 2003)

» Objective: to find a subset of K input variables among the D original
variables (features) while limiting the impact on performance

» Number of possible subsets: 2

10 _ 50 ~ 10 100 ~ 20
(1) (D) =100 (1) <

» Combinatorial optimization problem

Feature
selection and
construction

Member
generation and
selection

Hyperparameter
tuning

!
!
!

Feature Classification / Decision /

Segmentation)) L
extraction regression combining

f
i
f

Cross-cutting elements:
- Learning methodologies
- Coevolution

Prototype
selection and
construction

Symbolic model optimization (e.g.
regression function, distance, kernel)

o Filter approach for feature selection

» Use a statistical measure to evaluate the link between the features and
the labels (e.g. mutual information)

» Usually very fast as the statistical measure is cheap to compute

» The statistical measure may have little to do with the learning method
used

o Wrapper approach for feature selection
» Train a model for every feature subset candidates
» Expensive, as a complete training is done for each fitness evaluation

» Will capture all complex interactions between the features and the
method used

o Feature selection has been tackled with EC since a long time
(Siedlecki and Sklansky, 1989)
o Multiobjective bit string GA is obvious for that (Emmanouilidis,
Hunter, and Maclntyre, 2000; Oliveira et al., 2003)
» Each bit represents whether a feature is selected
» Evaluation often done following a wrapper approach
» Optimizing the performance (e.g. minimizing error rate) while
minimizing the number of features selected
@ Many have used EC-based feature selection for producing classifiers
» Acting on the features is algorithm-independent and may influence the
classifiers generated
» Particularly useful for generating a diverse pool of classifiers (see later)

(e Gagne (U Laval) [T EC for Supervised Learning ||| GECCO 2013 Tutorial 33/68
o As with feature selection, bit string GA is good for prototype selection
(Derrac, Garcia, and Herrera, 2010)
» Each bit identify whether an instance is used as prototype
» Kuncheva and Bezdek (1998) used a single objective with a weighted
sum of performance and number of prototypes

» Require however to select from a relatively small pool of instances
(when representing a selection as a bit string)

o Simultaneous prototype and feature selection (Kuncheva and Jain,
1999)

o k-Nearest Neighbour (k-NN) classification
» Assign class label according to the majority label of the k nearest
instances
» Classical approach: select nearest instances in the training set
> No training required, testing complexity of N x M (N: train set size,
M: test set size)
o Reducing the instance pool size by prototype selection
» Removing redundant and noisy instances
» Reduce testing time and space complexity

» A variety of heuristics has been proposed (Garcia et al., 2012; Wilson
and Martinez, 2000)

o Another combinatorial optimization problem!

[Tc Gagne (U Laval) [TTTEC for Supervised Learning ||| GECCO 2013 Tutorial 34/68
o Prototype selection: select instances from a pool
» Why not creating new prototypes from scratch!

» Prototype construction might produce smaller but more representative
set of prototypes

o Common approaches for prototype construction

» Clustering the data set (e.g. K-means)
» Learning vector quantization (a kind of supervised K-means)

o Evolutionary prototype construction (Derrac, Garcia, and Herrera,
2010; Kuncheva and Bezdek, 1998)

» Used real-valued algorithm to evolve x values of a given number of
prototypes

» Another approach: sequential optimization, where each run evolves a
bunch of prototypes with Particle Swarm Optimization (PSO) (Nanni
and Lumini, 2009)

» Michigan-style PSO for prototype construction (Cervantes, Galvan, and
Isasi, 2009)

@ Should we optimize the real-valued parameters with EC?
» Optimization in learning often solved through convex optimization
procedure
* SVM: quadratic programming
* Neural networks: gradient descent (backpropagation)
* Variants of Boosting (e.g. LPBoost)
» When convex optimization works well, do not try to beat it with EC
* Convex optimization techniques are well-known, converge usually faster
and/or to better solutions (with guarantees)
o However, real-valued EC has its niches
» Prototype construction
» Hyperparameter tuning
» Unconventional optimization objectives (e.g. non-convex,
non-differentiable)
» Multiobjective optimization

ROC space
= 1
.
0.9]-perfect C Pig L /4
. s
< .
3 B - ’
08 s . 08 .
B N % '. L s 4
.
0.7 ~ o r .
2z ° S i - //
206 N 9 06
% A ¢ i s
5 RN 2 &
 0.5(better 9 ‘N g L /
5 s N -3 s — NetChop C-term 3.0
. 5
£ 04 & s 2oal o — TAP+ ProtcaSMM-i
= e . = - F
& . o
0.3 & e t g
& ’
o . 7
)
0.2 & \ c 0.2 b
I 7’
A4 o
0.1 te worse 4
. .
. ,
. -
o
[0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 §
FPR or (1 - specificity) False positive rate
http://commons.wikimedia.org/wiki/File:ROC_space.png http://en.wikipedia.org/wiki/File:Roccurves.png

o ROC curves (Fawcett, 2006)
» x-axis: false positive rate
» y-axis: true positive rate
» Given a real-valued output, position on the curve correspond to a
threshold
» Allow evaluating performance for different types of errors or varying
class balance

o Area under the ROC curve (AUC-ROC)

» Evaluate the capacity to discriminate two classes for all threshold values

> Independent of the class balance

» Strong links with the Wilcoxon—Mann—Whitney statistical test and Gini
coefficient

» Hard to handle by convex optimization methods

o Evolving classifiers using the AUC-ROC as fitness measure (Sebag,
Azé, and Lucas, 2004)

[Tc Gagne (U Laval) TTTEC for Supenvised Learning ||| GECCO 2013 Tutorial 38 /68
o Hyperparameters: parameters of the learning algorithm
» Learning rate and regularization coefficient
» Number of hidden layers and neurons
» Number of neighbours
» Parametrization of kernel functions
o Sensitivity to these values varies
» Sometime, ballpark figures are good enough
» In other cases, fine tuning of hyperparameters is required
» For some algorithms, there are complex interactions between
hyperparameters
o Grid search
» Testing all combinations of hyperparameter values
» Efficient for 1 to 3 parameters, using relatively coarse set of values
o Evolutionary algorithms for hyperparameters
» Tuning regularization coefficient (C) and Gaussian kernel covariance
matrix of SVMs with CMA-ES (Friedrichs and Igel, 2005)
» Tuning SVMs with multiobjective GA (TP, FP, and #SV) (Suttorp and
Igel, 2006)

o Atrtificial neural networks often used for classification and regression
» Classical network: Multilayer Perceptron (MLP)
» New trend: deep networks
o Optimizing neural network topologies
» Hyperparameter tuning: optimizing the number of layers and neurons
of MLPs
@ Neuroevolution of Augmenting Topologies (NEAT) (Stanley and
Miikkulainen, 2002)
» Evolve both the weights and topology of the network
» Try to find a balance between fitness and speciation
» Start with simple topologies and develop them incrementally
o In general, neuroevolution has not appeared particularly fit for
supervised learning
» Much better at control/reinforcement learning tasks

(e Gagné (U Laval) [T EC for Supervised Learning ||| GECCO 2013 Tutorial 41/68
o Introductory example for GP (Koza, 1992)

» Infer an equation in its analytical form from a set of test cases

» Arithmetic operators as branches (e.g. +, —, X, = sin, cos,exp, log)

» Variables of the problem (i.e. x1,...,xp) and constants (e.g.

0,1,m, ERC) as terminals

o Still relatively efficient for doing regression

» Particularly interesting when symbolic equations are requested

» Does an implicit feature selection

o See the GECCO workshop on symbolic regression and modelling

o Genetic Programming (GP) is a natural approach for supervised
learning
» Classification/regression model can be seen as a computer program
» Specifying the GP configuration for evolving the model is
straightforward in many cases
o Evolve variable-length model
» Allow to produce models of varying complexity
» Bloat problem can be fought through regularization, much like what is
done in supervised learning (Amil et al., 2009)
» Models produced are symbolic and intelligible

o Applications of GP to classification (Espejo, Ventura, and Herrera,
2010)
» Feature construction
» Decision trees
» Rule-based systems
» Discriminant functions

o Feature construction

» Creating new features from the existing ones

Usually allow to reduce the input size of the model

Particularly interesting when done through some non-linear mapping
Wrapper and filter methods can be used

o Domain knowledge is usually difficult to obtain

» Building automatically features should help to extract useful
information and use the good representation
o Feature construction with GP
» Make use of symbolic regression to construct features
» Evolve all features at the time (Sherrah, Bogner, and Bouzerdoum,
1997) or one feature constructed at the time (Bot, 2001)
» Multiobjective feature construction with GP (Zhang and Rockett, 2009)

vYyy

o Distance measure: evaluate how dissimilar are two values
» Central component of instance-based classifiers (e.g. k-NN)
» Most common is Euclidean distance, but others are possible
» Using GP to evolve the distance measure of classifiers (Gagné and
Parizeau, 2007)
* Evolve a d(x,y) with vector instructions (i.e. similar to Matlab)
o Kernel function: measure similarity of two data
» Central in SVM and other kernel methods
» Allow mapping the input space in an higher dimension one, without
working explicitly in it (kernel trick)
» Kernels can be a composition of other kernels
» Evolving kernels with GP (Gagné et al., 2006; Sullivan and Luke, 2007)
* Branches and terminals allows to define basic kernels that are combined
through the evolution
* Allow customization of the kernel function to the problem domain

[TC Gagne (U Laval) TTTTEC for Supervised Learning ||| GECCO 2013 Tutorial 45/68
o Condorcet’s jury theorem (1785)
» Assuming a jury of independent voters who have a probability of
p > 1/2 of making the correct decision
» Jury reaches correct decision asymptotically (with probability of 1), as
jury size increases
» Votes assumed to be independent and identically distributed (i.i.d.)
» Theoretical justification of democracy
o Making ensembles of classifiers/regression functions
» Ensembles are usually more reliable than single classifiers

» Eliminate noise of individual decisions
» Require members to be diversified

o Weak members are sufficient to make ensembles

» No need to obtain ultra high performances, better than 50% (better
than random) is good enough
» Often easier to generate diversity with weak algorithms

Feature
selection and
construction

Member
generation and
selection

Hyperparameter
tuning

Feature Classification / Decision /

Segmentation)) L
extraction regression combining

Cross-cutting elements:
- Learning methodologies
- Coevolution

Prototype
selection and
construction

Symbolic model optimization (e.g.
regression function, distance, kernel)

o Bias and variance with ensembles
» hj are i.i.d., with expectation E[h;] and variance Var(h;)

_ L1 1
Eh] = E Z[hf = 7LE[hy] = Efhj]
j=1

- 1 1 1
Var(h) = Var Zzh,- = 5L Var(hj) = | Var(hy)

Jj=1

o Variance decreases as the number of members (L) increases

» With ensembles, we can reduce variance without altering bias
» And so is reduced the mean square error

E [(r - h)2] = (r — E[b])? + Var(h)

bias®

o Ensemble variance, general case

Var(h) = éVa.r (Z hj> = é |:Z Var (hj) + 2 Z Z Cov(hj,h,-):|
J J

Jjoi>j

» Reduce further variance with negatively correlated members
» Square error can be reduced, as far as negative correlation does not
alter bias
o Diversity of responses in ensembles
» Goal when creating ensembles: members are not making mistakes on
the same data
» Extreme case without diversity: L copies of the same member
o Evolutionary ensembles with negative correlation learning (Liu, Yao,
and Higuchi, 2000)
» Make ensemble of neural networks for regression
» Individual networks trained with backpropagation + negative correlation
» Using EC to generate the members of the ensemble

[TC Gagne (U Laval) T EC for Supervised Learning ||| GECCO 2013 Tutorial 49 /68
o Evolving a population of classifiers
» Why not making a ensemble of classifiers, using the population as a
pool?
» Diversity of the population = diversity of the pool?
o Ensemble learning for free with EC (Gagné et al., 2007)

» Using EC to produce a population of classifiers

* Fitness function enforcing diversity by assigning a fixed credit for each
test case

» The ensemble is build by selecting members from the population

* OfFEEL: select the members from the final generation
* On-EEL: build the ensemble during the evolution, incrementally

» Somehow related to Michigan-style algorithms

o Overproduce: generate a varied pool of classifiers
o Select: choose a subset of classifiers from the pool, maximizing a
given measure (performance and/or diversity)
» Feature selection techniques transpose well to member selection
o EC is good for overproduction
» Diversity in the population is a already a desired property of EC
» Diversity measures are often hard to use with convex optimization
» Population of solutions = pool of classifiers
» Generating a diverse pool through evolutionary feature selection
(Oliveira, Morita, and Sabourin, 2006)
o Evolutionary member selection
» Dynamic selection of members at runtime with NSGA-II, according to
the data to classify (Dos Santos, Sabourin, and Maupin, 2008)
» Overfitting cautious member selection methodology relying on
multiobjective GA (Dos Santos, Sabourin, and Maupin, 2009)

[CGagné (Utaval) | ECifor Supervised Learning | GECCO 2013 Tutorial 50 /68
o Bagging: generate passively varied classifiers through random
resampling of training set

o Boosting: produce varied classifiers by modifying sampling weights of
data according to their difficulty
o BagGP and BoostGP (lba, 1999)
» Split the population into subpopulations
» Resample training set for each subpopulation, using Bagging or
Boosting
» Make ensemble with the best individual of each subpopulation
o GPboost: modify weighting of test cases of several sequential GP runs
(Paris, Robilliard, and Fonlupt, 2002)

o Dataset size for evolutionary learning is a concern
» Many individuals evaluated with a large datasets = expensive
computation
» Not all instances need to be used for evaluating all individuals at each
generation
o Dynamic Subset Selection (DSS) (Gathercole and Ross, 1994)
» Evaluate fitness with a training subset of “difficult” instances
» Compute a weight for each training instance according to its age and
difficulty
» Assign a selection probability according to the normalized instance
weight and target training subset size
» Renew subset at each generation

o A variant of DSS has been successfully applied to train GP classifiers
with a dataset of 500000 instances (Song, Heywood, and
Zincir-Heywood, 2005)

(e Gagne (U Laval) T EC for Supervised Learning ||| GECCO 2013 Tutorial 53/68
o Discriminate charlatans from competent financial counsellors (Jensen
and Cohen, 2000)
» Ask counsellors to predict whether stock markets will go up or down on
a day
» Request to make prediction for 14 days, a candidate is deemed
competent if he predicts correctly 11 days or more
* A charlatan makes random guesses (50%/50%), so have 2.87%
chances of passing the test
o Does not work for selecting a counsellor among n
> Probability that a charlatan passes the test among n: 1—(1—0.0287)"
* For n = 10, = 25% chances one charlatan will pass the test, for
n = 30, ~ 58% chances
» For high n, almost sure that charlatans will pass the test, even thought
they are not doing better than random guesses
@ Oversearching: searching for solutions in huge model spaces
» By testing too many candidate solutions, may select one that fit well
the training set, but does not generalize well
» Common issue when doing supervised learning with EC

o Competitive coevolution (Hillis, 1990)

» Evolving species with antagonistic goals (i.e. parasite-host model)
» Can reduce significantly the number of test cases for each individual

o Coevolutionary symbolic regression (methods for evolving robust
programs) (Panait and Luke, 2003)
» Host species: symbolic regression with GP
» Parasite species: test cases evolved with real-valued GA
» Good at improving generalization, by renewing test cases at each
generation
o Coevolving nearest neighbour classifiers (Gagné and Parizeau, 2007)
» Species 1: distance measure with GP
» Species 2: prototype selection with multiobjective GA (cooperative)
» Species 3: selection of evaluation data with GA (competitive)
» Competitive coevolution limits greatly overfitting, with reduced
distance measure and prototypes set size

[Tc Gagne (U Laval) [T EC for Supenvised Learning ||| GECCO 2013 Tutorial 54/68
o Recommendations to avoid overfitting and oversearching (Igel, 2012)
@ Use as much data as possible, to improve training and fitness
evaluation reliability
Q When relevant, use a distinct dataset from the training set for
evaluating the fitness (use an evaluation set)
Q If possible, renew evaluation dataset at each generation
@ Generalization performance must be evaluated on data not used for
computing the fitness (use a validation set)
© Number of evaluations before oversearching should be evaluated, which
is dependent of the amount of data available
O Final results shall be reported on a distinct dataset (use a test set)
o Up to four datasets may be required in a proper methodology
» Training set: to train classifiers
» Evaluation set: to evaluate fitness of individual on new data
» Validation set (a.k.a. final selection set): to select the individual to
retain from an evolution and/or do early stopping
» Test set: to evaluate generalization performances and compare
different algorithms

Part |1l

o Building representations
» Feature selection/construction
» Distance measures and kernel functions
» Segmentation level of the pattern recognition pipeline
o Building ensembles
» Generating pool of diverse models
» Selecting members for making the ensembles
» Population of models = an ensemble!
o Many optimization challenges in supervised learning
» EC can be very useful where other “classical” methods fail
» Combinatorial optimization
» Multiobjective optimization
» Variable-length and symbolic representations (i.e. GP)

o Optimizing classification/regression models with EC
» Many state-of-the-art models rely on convex optimization methods
(e.g. SVM)
* EC not likely to figure well compared to these approaches
» But EC can achieve excellent results in specific cases
* Prototype selection/construction for instance-based learning
* Hyperparameter tuning, when there is a complex relation among these
(e.g. C and o of Gaussian SVMs)
* Non-convex, non-differentiable performance measure (e.g. AUC-ROC)
Intelligible models (e.g. symbolic regression)

*

[TcGagne (U Laval) [TTTEC for Supenvised Learning ||| GECCO 2013 Tutorial 58 /68
o Dataset size trade-off of evolutionary learning
» Avoid using small datasets
* Learning has moved beyond the few hundreds instances found in most

toy datasets
* With small datasets further partitioning gets difficult

» Big dataset implies long fitness evaluation
* EC is expensive in term of number of candidate solutions evaluated
o Proper supervised learning with EC requires up to 4 datasets
» Training set, evaluation set, validation set, and test set
o Oversearching issue

» Large datasets are required to avoid good performances by chance
» Selecting best-of-run with a validation set
» Validation set good also for early stopping

o Renewing the evaluation set during the evolution
» Competitive coevolution, dynamic subset selection, etc.

@ Deep learning (Bengio, 2009)
» “The biggest data science breakthrough of the decade”
» Techniques to train neural network with many layers (deep networks)
» Several EC techniques can be tackled to develop better network (e.g.
neuroevolution)

o Large-scale learning (Bottou and Bousquet, 2011)

» Big data learning: how to apply efficiently (performance- and
computation-wise) supervised learning to huge databases?

» Implicit parallelism of EC can allow relatively fast processing on parallel
machines, along with some clever data management

o Semi-supervised learning (Zhu, 2007)

» Big databases, with only a small subset of data labelled
» Learn structures from unlabelled data, tag then with labelled one

[TC Gagne (U Laval) [T EC for Supervised Learning ||| GECCO 2013 Tutorial 61/68

Amil, N. M., N. Bredeche, C. Gagné, S. Gelly, M. Schoenauer, and O. Teytaud (2009). “A
statistical learning perspective of genetic programming”. In: Proc. of EuroGP. Springer,
pp. 327-338. Url: http://dx.doi.org/10.1007/978-3-642-01181-8_28.

Bengio, Y. (2009). “Learning deep architectures for Al". In: Foundations and Trends in Machine
Learning 2.1, pp. 1-127. Url: http://dx.doi.org/10.1561/2200000006.

Bot, M. C. (2001). “Feature extraction for the k-nearest neighbour classifier with genetic
programming”. In: Proc. of EuroGP. Springer, pp. 256-267. Url:
http://dx.doi.org/10.1007/3-540-45355-5_20.

Bottou, L. and O. Bousquet (2011). “The Tradeoffs of Large Scale Learning”. In: Optimization
for Machine Learning. Ed. by S. Sra, S. Nowozin, and S. J. Wright. MIT Press, pp. 351-368.
Url: http://leon.bottou.org/papers/bottou-bousquet-2011.

Cervantes, A., I. M. Galvan, and P. Isasi (2009). “AMPSO: a new particle swarm method for
nearest neighborhood classification”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 39.5, pp. 1082-1091. Url:
http://dx.doi.org/10.1109/TSMCB.2008.2011816.

Derrac, J., S. Garcia, and F. Herrera (2010). "A survey on evolutionary instance selection and
generation”. In: International Journal of Applied Metaheuristic Computing (IJAMC) 1.1,
pp. 60-92. Url: http://sci2s.ugr.es/pr/pdf/2010-Derrac-IJAMC.pdf.

Dos Santos, E. M., R. Sabourin, and P. Maupin (2008). “A dynamic overproduce-and-choose
strategy for the selection of classifier ensembles”. In: Pattern Recognition 41.10,
pp. 2993-3009. Url: http://dx.doi.org/10.1016/j.patcog.2008.03.027.

o Many researchers in machine learning have low esteem of EC

» Just a bunch of ad hoc bio-inspired stochatic methods (not so ad hoc)

» There is no theoretical proofs supporting the methods (that's not true!)

» Very expensive computation required, close to brute force search
(sometime true)

o Tackle the good problems, where classical learning fails

» Some problems are ignored in machine learning, as they do not fit the
tools they are used to

o Be audacious but humble
» Learning community is hyperactive and so moving quickly
» Before doing anything, understand what the community knows on the
problem and the solutions proposed

[TTc Gagne (U Laval) TTTTTEC for Supervised Learning ||| GECCO 2013 Tutorial 62/68

Dos Santos, E. M., R. Sabourin, and P. Maupin (2009). “Overfitting cautious selection of
classifier ensembles with genetic algorithms”. In: Information Fusion 10.2, pp. 150-162. Url:
http://dx.doi.org/10.1016/j.inffus.2008.11.003.

Emmanouilidis, C., A. Hunter, and J. Maclntyre (2000). “A multiobjective evolutionary setting
for feature selection and a commonality-based crossover operator”. In: Proc. of IEEE-CEC,
pp. 309-316. Url: http://dx.doi.org/10.1109/CEC.2000.870311.

Espejo, P. G., S. Ventura, and F. Herrera (2010). “A survey on the application of genetic
programming to classification”. In: Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 40.2, pp. 121-144. Url:
http://dx.doi.org/10.1109/TSMCC.2009.2033566.

Fawcett, T. (2006). “An introduction to ROC analysis”. In: Pattern recognition letters 27.8,
pp. 861-874. Url: http://dx.doi.org/10.1016/j.patrec.2005.10.010.

Friedrichs, F. and C. Igel (2005). “Evolutionary tuning of multiple SVM parameters”. In:
Neurocomputing 64, pp. 107-117. Url:
http://dx.doi.org/10.1016/j.neucom.2004.11.022.

Gagné, C. and M. Parizeau (2007). “Coevolution of nearest neighbor classifiers”. In:
International Journal of Pattern Recognition and Artificial Intelligence 21.05, pp. 921-946.
Url: http://dx.doi.org/10.1142/50218001407005752.

Gagné, C., M. Schoenauer, M. Sebag, and M. Tomassini (2006). “Genetic programming for
kernel-based learning with co-evolving subsets selection”. In: Proc. of Parallel problem solving
from nature. Springer, pp. 1008-1017. Url: http://dx.doi.org/10.1007/11844297_102.

Gagné, C., M. Sebag, M. Schoenauer, and M. Tomassini (2007). “Ensemble learning for free
with evolutionary algorithms?” In: Proc. of the Genetic and evolutionary computation. ACM,
pp. 1782-1789. Url: http://dx.doi.org/10.1145/1276958.1277317.

Garcia, S., J. Derrac, J. R. Cano, and F. Herrera (2012). “Prototype selection for nearest
neighbor classification: Taxonomy and empirical study”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 34.3, pp. 417-435. Url:
http://dx.doi.org/10.1109/TPAMI.2011.142.

Gathercole, C. and P. Ross (1994). “Dynamic training subset selection for supervised learning in
genetic programming”. In: Proc. of Parallel Problem Solving from Nature. Springer,
pp. 312-321. Url: http://dx.doi.org/10.1007/3-540-58484-6_275.

Guyon, |. and A. Elisseeff (2003). “An introduction to variable and feature selection”. In:
Journal of Machine Learning Research 3, pp. 1157-1182. Url:
http://jmlr.csail.mit.edu/papers/v3/guyon03a.html.

Hillis, W. D. (1990). “Co-evolving parasites improve simulated evolution as an optimization
procedure”. In: Physica D: Nonlinear Phenomena 42.1, pp. 228-234. Url:
http://dx.doi.org/10.1016/0167-2789(90)90076-2.

Iba, H. (1999). “Bagging, boosting, and bloating in genetic programming”. In: Proc. of the
Genetic and evolutionary computation conference. Vol. 2, pp. 1053—-1060. Url:
http://www.cs.bham.ac.uk/ wbl/biblio/gecco1999/GP-407.pdf.

Igel, C. (2012). “A Note on Generalization Loss When Evolving Adaptive Pattern Recognition
Systems". In: IEEE Transactions on Evolutionary Computation PP. Url:
http://dx.doi.org/10.1109/TEVC.2012.2197214.

Oliveira, L. S., R. Sabourin, F. Bortolozzi, and C. Y. Suen (2003). “A methodology for feature
selection using multiobjective genetic algorithms for handwritten digit string recognition”. In:
International Journal of Pattern Recognition and Artificial Intelligence 17.6, pp. 903—-929.
Url: http://dx.doi.org/10.1142/5021800140300271X.

Panait, L. and S. Luke (2003). “Methods for evolving robust programs”. In: Proc. of the
Genetic and evolutionary computation conference. Springer, pp. 1740-1751. Url:
http://dx.doi.org/10.1007/3-540-45110-2_66.

Paris, G., D. Robilliard, and C. Fonlupt (2002). “Applying boosting techniques to genetic
programming”. In: Proc. of Artificial evolution. Springer, pp. 267-278. Url:
http://dx.doi.org/10.1007/3-540-46033-0_22.

Sebag, M., J. Azé, and N. Lucas (2004). “ROC-based evolutionary learning: Application to
medical data mining”. In: Proc. of Artificial Evolution. Springer, pp. 384—396. Url:
http://dx.doi.org/10.1007/978-3-540-24621-3_31.

Sherrah, J. R., R. E. Bogner, and A. Bouzerdoum (1997). “The evolutionary pre-processor:
Automatic feature extraction for supervised classification using genetic programming”. In:
Proc. of the Genetic Programming conference. Citeseer, pp. 304-312.

Siedlecki, W. and J. Sklansky (1989). “A note on genetic algorithms for large-scale feature
selection”. In: Pattern Recognition Letters 10.5, pp. 335-347. Url:
http://dx.doi.org/10.1016/0167-8655(89)90037-8.

Jensen, D. D. and P. R. Cohen (2000). “Multiple comparisons in induction algorithms”. In:
Machine Learning 38.3, pp. 309-338. Url: http://dx.doi.org/10.1023/A:1007631014630.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press. Url:
http://books.google.com/books/about/Genetics_programming.html?id=Bhtxo60BVOEC.

Kuncheva, L. I. and J. C. Bezdek (1998). “Nearest prototype classification: Clustering, genetic
algorithms, or random search?” In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 28.1, pp. 160-164. Url:
http://dx.doi.org/10.1109/5326.661099.

Kuncheva, L. I. and L. C. Jain (1999). “Nearest neighbor classifier: simultaneous editing and
feature selection”. In: Pattern Recognition Letters 20.11, pp. 1149-1156. Url:
http://dx.doi.org/10.1016/50167-8655(99)00082-3.

Liu, Y., X. Yao, and T. Higuchi (2000). “Evolutionary ensembles with negative correlation
learning”. In: IEEE Transactions on Evolutionary Computation 4.4, pp. 380-387. Url:
http://dx.doi.org/10.1109/4235.887237.

Nanni, L. and A. Lumini (2009). “Particle swarm optimization for prototype reduction”. In:
Neurocomputing 72.4, pp. 1092-1097. Url:
http://dx.doi.org/10.1016/j.neucom.2008.03.008.

Oliveira, L. S., M. Morita, and R. Sabourin (2006). ““Feature selection for ensembles using the
multi-objective optimization approach”. In: Multi-Objective Machine Learning. Springer,
pp. 49-74. Url: http://dx.doi.org/10.1007/3-540-33019-4_3.

Song, D., M. |. Heywood, and A. N. Zincir-Heywood (2005). “Training genetic programming on
half a million patterns: an example from anomaly detection”. In: IEEE Transactions on
Evolutionary Computation 9.3, pp. 225-239. Url:
http://dx.doi.org/10.1109/TEVC.2004.841683.

Stanley, K. O. and R. Miikkulainen (2002). “Evolving neural networks through augmenting
topologies”. In: Evolutionary computation 10.2, pp. 99-127. Url:
http://dx.doi.org/10.1162/106365602320169811.

Sullivan, K. M. and S. Luke (2007). “Evolving kernels for support vector machine classification”.
In: Proc. of the Genetic and evolutionary computation conference. ACM, pp. 1702-1707.
Suttorp, T. and C. Igel (2006). “Multi-objective optimization of support vector machines”. In:
Multi-objective machine learning. Springer, pp. 199-220. Url:

http://dx.doi.org/10.1007/3-540-33019-4_9.

Wilson, D. R. and T. R. Martinez (2000). “Reduction techniques for instance-based learning
algorithms”. In: Machine learning 38.3, pp. 257-286. Url:
http://dx.doi.org/10.1023/A:1007626913721.

Zhang, Y. and P. |. Rockett (2009). “A generic multi-dimensional feature extraction method
using multiobjective genetic programming”. In: Evolutionary Computation 17.1, pp. 89-115.
Url: http://dx.doi.org/10.1162/evco.2009.17.1.89.

Zhu, X. (2007). Semi-Supervised Learning Literature Survey. Tech. rep. Computer Sciences TR
1530. University of Wisconsin — Madison. Url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9681&rep=repl&type=pdf.

