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ABSTRACT
Recent bloat control methods such as dynamic depth limit
(DynLimit) and Dynamic Operator Equalization (DynOpEq)
aim at modifying the tree size distribution in a population of
genetic programs. Although they are quite efficient for that
purpose, these techniques have the disadvantage of evaluat-
ing the fitness of many bloated Genetic Programming (GP)
trees, and then rejecting most of them, leading to an impor-
tant waste of computational resources. We are proposing a
method that makes a histogram-based model of current GP
tree size distribution, and uses the so-called accept-reject
method for generating a population with the desired tar-
get size distribution, in order to make a stochastic control
of bloat in the course of the evolution. Experimental re-
sults show that the method is able to control bloat as well
as other state-of-the-art methods, with minimal additionnal
computational efforts compared to standard tree-based GP.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.3 [Probability
and Statistics]: Probabilistic algorithms (including Monte
Carlo)
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General Terms
Performance

The Histogram-based Accept-Reject Method for Genetic
Programming (HARM-GP) is inspired from distribution-
based bloat control techniques such as DynOpEq [4], but
takes a different approach for defining the target distribu-
tion and evaluating fitnesses. Indeed, the target distribution
with HARM-GP is defined from the size distribution of in-
dividuals at the previous generation, with a cut-off point
determined from the best-so-far individual size, for reducing
the frequency of large bloated individuals in the population.
The cut-off point is evaluated at each generation as being
half-way the current size of the best-so-far individual and
the cut-off value of the previous generation. The target dis-
tribution (wi) at the right of the cut-off point is given by an
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exponential decay function parameterized by a τ parameter
corresponding to the size increase (xi = x0 + τ) with half
the frequency of the cut-off (w0):

wi = w0 exp
[
− ln(2) · xi − x0

τ

]
. (1)

Moreover, the histogram of the source distribution is ob-
tained with kernel density estimation, using a triangular ker-
nel. Figure 1 presents an example of a source (boxes) and
target histograms (shaded area) obtained with this method.

In HARM-GP, a new population is produced by the clas-
sical accept-reject method, a well-known Monte Carlo ap-
proach commonly used for generating random numbers for
arbitrary distributions [2]. An accept probability is com-
puted for each individual using the ratio between the tar-
get and source distribution values for the size of the in-
dividuals. Individuals are generated by crossover, muta-
tion, and reproduction from the previous population and
are tested for acceptation with this probability until the re-
quested population size is obtained, without evaluating the
candidates fitness. Therefore, in opposition to DynLimit [3]
and DynOpEq, HARM-GP induces no supplementary fit-
ness evaluations compared to standard GP.

Experiments are made over six bloat control approaches:

NoLimit: standard GP without any bloat control;

DepthLimit: static depth limit [1] of 17;

DynLimit: dynamic depth limit [3], with initial limit of 6;

DynOpEq: with bin width of 5 [4], except for Symbolic
Regression where a bin width of 1 is used;

HARM5: HARM-GP with a small half-life of τ = 5, for
strong bloat control;

HARM40: HARM-GP with a larger half-life of τ = 40,
leading to softer bloat control.

Experiments were performed using DEAP1 on runs with
population size of 1000 individuals, crossover probability of
0.8, subtree mutation probability of 0.1 on the Symbolic Re-
gression, Artificial Ant, and Parity-6 problems [1]. Tourna-
ment selection with 5 participants is used for the Symbolic
Regression and Parity-6 problems, with runs stopped after
a budget of 80k fitness evaluations. For the Artificial Ant,
100k evaluations are conducted, with 7 participants to tour-
naments. Figure 2 plots three graphs for the Artificial Ant
problem. Table 1 presents a set of detailed measurements
carried out on all three problems tested with the six bloat
methods we compared. Results show that HARM-GP is able

1Freely available at http://deap.googlecode.com.

http://deap.googlecode.com


Table 1: Experimental results. Third to fifth
columns present results computed on successful runs
only. Mean overall accumulated size corresponds to
the total number of nodes processed in the popula-
tion when the maximum number of fitness evalua-
tion is reached.
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Symbolic Regression
NoLimit 87% 12 320 22.1 221 634 20 203 244
DepthLimit 85% 12 517 22.0 220 897 4 902 013
DynLimit 93% 14 835 18.8 235 510 2 152 695
DynOpEq 74% 50 648 21.8 696 070 1 391 389
HARM5 99% 13 162 14.8 125 011 1 081 575
HARM40 88% 14 991 18.4 280 149 3 019 076

Artificial Ant
NoLimit 36% 15 265 55.2 1 058 498 38 038 917
DepthLimit 29% 12 103 43.3 671 771 13 445 970
DynLimit 28% 25 213 46.6 1 373 064 7 471 147
DynOpEq 40% 37 368 51.0 3 064 943 18 704 826
HARM5 39% 16 396 18.3 272 691 1 615 314
HARM40 46% 22 278 35.6 816 279 4 057 703

Parity-6
NoLimit 97% 12 607 52.3 896 412 26 772 717
DepthLimit 89% 13 127 50.6 698 269 8 769 320
DynLimit 92% 12 148 40.3 438 914 3 954 319
DynOpEq 94% 35 339 34.1 955 259 2 853 804
HARM5 79% 25 728 17.6 369 804 1 173 898
HARM40 96% 16 634 29.4 589 192 3 137 083

of the same success rate as other methods (similar or better
performances), while keeping tight control over accumulated
size (less computation).
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Figure 1: HARM-GP source and target histograms.
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Figure 2: Size and fitness for the Artificial Ant prob-
lem: (top) best fitness median (over the 100 runs)
according to the number of fitness evaluations; (mid-
dle) mean size median at each generation; and (bot-
tom) best fitness median against accumulated size.
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