
August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

International Journal of Pattern Recognition and Artificial Intelligence
c© World Scientific Publishing Company

CO-EVOLUTION OF NEAREST NEIGHBOR CLASSIFIERS

CHRISTIAN GAGNÉ∗ and MARC PARIZEAU

Laboratoire de Vision et Systèmes Numériques (LVSN),
Département de Génie Électrique et de Génie Informatique,

Université Laval, Québec (Quebec), G1K 7P4, Canada.

cgagne@gmail.com, marc.parizeau@gel.ulaval.ca

This paper presents experiments of Nearest Neighbor (NN) classifier design using dif-
ferent evolutionary computation methods. Through multi-objective and co-evolution
techniques, it combines genetic algorithms and genetic programming to both select NN

prototypes and design a neighborhood proximity measure, in order to produce a more
efficient and robust classifier. The proposed approach is compared with the standard NN
classifier, with and without the use of classic prototype selection methods, and classic
data normalization. Results on both synthetic and real data sets show that the proposed

methodology performs as well or better than other methods on all tested data sets.

Keywords: Pattern Recognition; Nearest Neighbor Classification; Prototype Selection;

Proximity Measure; Evolutionary Computation; Genetic Algorithms; Genetic Program-
ming; Co-evolution; Multi-objective Optimization.

1. Introduction

Nearest Neighbor (NN) classification7,11,16, sometimes called instance-based classi-

fication, is a widely used technique for pattern recognition and machine learning.

It is recognized as a simple yet efficient technique for supervised learning problems

with continuous features (attributes). After more than 35 years, NN classifiers are

still widely studied and used for solving pattern recognition problems. This type

of classifier is also often used as a baseline system relative to which new classifier

systems are compared.

On the other hand, Evolutionary Computation (EC)1 is a promising machine

intelligence discipline involving the simulation of natural evolution on computers.

It is a generic problem solving paradigm applicable whenever solutions can be

represented by some data structure and evaluated by an objective function; the

so-called “fitness” function. Populations of solutions – initially random solutions –

evolve over time through a sequence of processes that include (natural) selection

and different genetic operations. In the end, the fittest individual is chosen as “the”

solution to the problem and, although EC systems do not guarantee convergence

∗Christian Gagné is now with Informatique WGZ Inc., 819 ave. Monk, Québec (Quebec), G1S
3M9, Canada. E-mail: christian.gagne@wgz.ca

1

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

2 Gagné and Parizeau

to an optimal solution, they have been shown in practice to sometimes outperform

other techniques as well as human experts for hard problems3,28.

In this paper, different EC techniques will be presented to design efficient and

robust NN classifiers. Four approaches will be studied: 1) prototype selection with

multi-objective Genetic Algorithms (GA)24,32; 2) neighborhood proximity measure

design with Genetic Programming (GP)2,27; 3) cooperative co-evolution of proto-

type selection and neighborhood proximity design; and 4) competitive co-evolution

of fitness evaluation set selection, on the one hand, and cooperative co-evolution

of prototype selection and neighborhood proximity design, on the other hand. For

each approach, results will be presented and analyzed using both synthetic and real

data sets.

The paper is structured as follows. Next, Section 2 proceeds with a summary

of the well-known NN classifier. This section emphasizes the three main elements

of this classifier, two of which we aim to optimize (prototype selection and neigh-

borhood proximity). The four synthetic data sets used in this work are described

in Section 3. These data sets have been designed to highlight different aspects of

the classification problem. Then, the four considered approaches are presented in

Sections 4, 5, and 6. Section 7 proceeds with results obtained on five problems taken

from the UCI machine learning repository4. Finally, the approaches and results ob-

tained are discussed in Section 8, followed by some considerations on how EC can

contribute to the design of efficient pattern recognition systems.

2. Nearest Neighbor Classification

The design of NN classifiers requires the specification of three distinct elements16:

a set of prototype vectors, a classification rule, and a neighborhood proximity mea-

sure. The prototypes are representative data used by the classifier to assign class

labels. The selection of prototypes is a critical operation which involves using the

training data set to partition the input vector space based on the neighborhood

proximity measure. If the selected prototypes are noisy or not truly representative

of the problem at hand, the partition may be inappropriate and lead to low recog-

nition rates. The number of selected prototypes must also be minimized because it

has a direct impact on classification time.

The NN classification rule consists essentially in choosing the label associated

with the nearest neighbor of an unknown input vector x. More formally, let P =

{p1, ...,pm} denote the set of m labeled prototypes and let p ∈ P be the prototype

nearest to x. According to the basic NN rule, x is assigned to the class label assigned

to p. This is a very straightforward rule which performs well on noise-free data.

But for real-life problems, where noise may be omnipresent in the training data, a

simple refinement that leads to the so-called k-NN rule, is to consider the k nearest

neighbors and to assign to x the label of the most frequently occurring class label,

breaking ties arbitrarily. Increasing the value of k then attenuates the effect of noise

but may also soften the class boundaries.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 3

Different proximity measures can be used for k-NN classification. A very com-

mon and general one is based on the La norm which can be used to measure a

distance between two vectors x = [x1 · · ·xn]T and y = [y1 · · · yn]T

La(x,y) =

(

n
∑

i=1

|xi − yi|
a

)
1

a

(1)

The most common instantiation of this norm is the Euclidean distance, when a = 2:

L2(x,y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (2)

Two other common cases are the Manhattan distance (a = 1):

L1(x,y) =
n
∑

i=1

|xi − yi|, (3)

and the L∞ norm:

L∞(x,y) =
n

max
i=1

(|xi − yi|) (4)

The problem with La norms is that the different dimensions of the feature space

must somehow be normalized to comparable scales. The choice of a is arbitrary but

puts a different emphasis on the larger components of x− y relative to the smaller

ones. For example, in L1 the emphasis is the same for all components. Input features

should thus have the same scale (units) in order to measure coherent distances.

The greater the value of a, the greater the emphasis on the larger components.

At the limit, when a → ∞, the measured distance depends only on the single

largest component. It is important to realize that the La family of norms is just

one out of an infinite number of possible neighborhood proximity measures. One

of the objectives of this paper is to develop a general approach for automatically

discovering the best measure for a given classification problem.

An alternative to changing the proximity measure is to normalize the feature

space. For example, a simple scaling transformation of every feature in the inter-

val [0, 1] can help in some circumstances, although it may also distort the data

distribution and make discrimination more difficult. A more sophisticated solution

consists in applying a whitening transform16 that first removes any linear depen-

dency between the features by translation and rotation (rigid transform), before

applying the scaling transform. Under the hypothesis of multinormal distributions,

this whitening transform can make sense, but there is no guarantee that it will

enhance the discrimination power of the chosen proximity measure for other class

distributions.

Finally, it should be noted that the k-NN classifier has a computational com-

plexity of O(mn log k) for processing a single unknown input vector x. Thus, there

is a definite interest in reducing both the number of neighbors (k) and the size of

the prototype set (m) in order to produce more efficient classifiers.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

4 Gagné and Parizeau

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(c) (d)

Fig. 1. Synthetic data sets: (a) overlapped; (b) slanted; (c) jagged; and (d) spirals.

3. Synthetic Data Sets

The synthetic data sets that were designed for the first series of experiments are

illustrated in Figure 1. They have a 2D feature space and two classes so that they

can easily be visualized on paper. The data sets are:

(1) Overlapped — two horizontally elongated multinormal distributions of 250

points each, with an important overlap between classes along the smaller of

their two principal axes (optimal Bayesian recognition rate is 76.8%);

(2) Slanted — distributions similar to the previous one but slanted by 30-degrees

(optimal Bayesian recognition rate is 90.4% in this case);

(3) Jagged — two non-overlapping uniform distributions of respectively 971 and

1029 points, but with very jagged boundaries (100% separable);

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 5

Table 1. Best 1-NN classifier found when varying the La norm (a = 1, 2,∞), and the type of

normalization (none, scaling or whitening); using all instances of the training set as prototypes,
the best classifier is selected on the evaluation and validation sets, and recognition rates are
reported for the test set.

Baseline Best Classic Configuration

Data Set (L2) Distance Normalization Rec. Shift

Overlapped 69.6% L∞ Scaling +2.4%

Slanted 80.0% L2 Whitening +8.8%

Jagged 94.2% L2 None 0.0%

Spirals 81.4% L1 Scaling −2.0%

(4) and Spirals — the classical intertwined spirals with 193 points each.

Each data set has been randomly partitioned into four equal size subsets: a

training data set, a fitness evaluation data set, a validation data set and a test

data set; these subsets are used throughout all experiments with synthetic data.

The training set is the one from which the GA will select class prototypes. The

fitness evaluation set will be used to evaluate the fitness of individual solutions,

for both GA and GP. The validation set is used to select the best-of-generation

individual, that is the one with the best generalization capability. Finally, the test

set is used strictly at the end of the evolution process to evaluate the performance

of the best-of-run solutions (experiments are repeated 10 times).

Table 1 summarizes the baseline performances that can be obtained on these

synthetic data sets using a classic 1-NN classifier with an L2 norm and no nor-

malization of the input feature space. The table also gives the best performance

that can be achieved when varying the basic parameters of the 1-NN: use of norm

L1, L2, or L∞; either without normalization, or with simple scaling or whitening

transforms. Only one neighbor is used throughout all experiments presented in this

paper.

Column “Rec. Shift” in Table 1 specifies for each data set the increase in perfor-

mance that was observed for the best combination of parameters. For instance, for

the Overlapped data set, a classifier with L∞ norm and scaling transform performs

best with an increase of +2.4% relative to the baseline. In this case, a simple scal-

ing transform seems optimal since the data are elongated and the two features are

linearly independent. For the case of the Slanted data set, where the two features

are linearly dependent, a whitening transform seems optimal since it enables the

de-correlation of the features. For the Jagged and Spirals sets the baseline result

is pretty much the best that can be obtained. The negative “Rec. Shift” value for

the “Spirals” set can be explained by the fact that the best classifier configuration

selected using the evaluation and validation sets (which was performing a little bet-

ter than the baseline configuration) was in fact performing a little worse than the

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

6 Gagné and Parizeau

(1) Let X = {x1 · · ·xm} designate the full training set, shuffled in random

order;

(2) Initialize P = {x1}, the initial prototype set, and X = X − {x1};

(3) For each element xi ∈ X (in random order):

(a) Let θ be the class label of the nearest neighbor of xi in P ;

(b) If θ disagrees with the label of xi, then P = P +{xi} and X = X−{xi}.

(4) If |X| > 0 and the condition 3(b) was true at least once, then go back to

step 3;

(5) Return P as the condensed prototype set.

Fig. 2. Hart’s condensing algorithm for prototype selection.

(1) Initialize P , the prototype set, using the complete training set;

(2) For each pi ∈ P (in random order):

(a) Find in P − {pi}, the k nearest neighbors of pi;

(b) Find the majority class label θ within these neighbors, breaking ties

arbitrary;

(c) If θ disagrees with the label of pi, remove pi from P .

Fig. 3. Wilson’s editing algorithm for prototype selection.

baseline configuration when evaluated on the test set.

In the next three sections, we will study four approaches to enhance the per-

formance of the NN classifier. We will see that it is possible to both reduce the

number of prototypes and increase recognition rates.

4. Prototype Selection with a Multi-objective Genetic Algorithm

Prototype selection for NN classifiers is an important topic that has been investi-

gated in the fields of pattern recognition and machine learning. The pioneering work

of Hart21, summarized in Figure 2, consists of a condensing rule for constructing

a prototype set. Another classical approach is the editing algorithm of Wilson44,

which attempts to eliminate noisy instances from the prototype set, as described

in Figure 3. It is common to apply Wilson’s editing followed by Hart’s condensing

algorithm for maximum prototype set reduction. Table 2 presents recognition and

selection rates obtained on the test sets after Wilson’s editing, Hart’s condensing,

and Wilson’s editing followed by Hart’s condensing, respectively. Results show that

Wilson’s editing improves recognition rates slightly for the overlapped set, has no

effect for the slanted set, and degrades the recognition rate for jagged and spirals

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 7

Table 2. Recognition and selection rates obtained on the test sets using Wilson’s editing, Hart’s

condensing and Wilson’s editing followed by Hart’s condensing; k = 1 with L2 metric and no
normalization. Column “Baseline” is the recognition rate achieved with the complete training set
used as a prototype set, column “Rec. Shift” is the differential in recognition rate after prototype
selection, compared to the baseline, while column “Sel. Rate” is the ratio of the number of selected
prototypes over the size of the training set.

Wilson’s editing Hart’s cond. Wilson + Hart

Base- Rec. Sel. Rec. Sel. Rec. Sel.

Data Set line Shift Rate Shift Rate Shift Rate

Overlapped 69.6% +0.8% 68.8% −8.0% 51.2% 0.0% 16.8%

Slanted 80.0% 0.0% 87.2% +4.0% 28.0% +3.2% 15.2%

Jagged 94.2% −0.4% 95.2% −1.8% 14.8% −0.4% 9.0%

Spirals 81.4% −17.5% 79.2% −5.2% 53.1% −23.7% 28.1%

data sets. Overall, the reduction in number of prototypes is modest. Hart’s condens-

ing is much more aggressive in reducing the number of prototypes but also tends

to degrade recognition rates, except for the slanted set. Wilson’s editing combined

with Hart’s condensing reduces the number of prototypes even further, while keep-

ing recognition rates at a level comparable to Wilson’s editing alone. In conclusion,

these classic prototype selection methods are very efficient at reducing the num-

ber of prototypes but are not able to simultaneously enhance recognition rate. The

worst performance is for the spirals that are essentially noise free and somewhat

under-sampled in the training set (1/4 of the spirals).

Evolutionary Algorithms (EA) have been used previously for prototype selec-

tion. Cano et al.8 present a detailed analysis on the use of different EA for prototype

selection, while Ho et al.23 and Kuncheva and Jain30 demonstrated the efficiency

of GA for simultaneous prototype and feature selection, all of them using a sin-

gle weighted sum fitness measure. In this work, we purposely chose to conduct

only prototype selection, as was done by Cano et al.8, since feature selection will

be indirectly carried out in the following sections when we evolve problem-specific

neighborhood proximity measures. Other works on feature selection with GA that

can be directly adapted to prototype selection include those of Yang and Honavar46,

and Oliveira et al.33. Both used a multi-objective GA for feature selection. Recently,

Chen et al.9 proposed a multi-objective GA for simultaneous prototype and feature

selection, in which they use specialized crossover and multi-objective selection oper-

ations. They demonstrated that their multi-objective approach was able to generate

good results in comparison with a single objective version of a previously proposed

system23.

Fernández and Isasi18 tackled the prototype selection problem by taking a dif-

ferent route. They evolve a set of prototypes that compete to increase their quality

in a local sense. The evolutionary algorithm includes some specific custom genetic

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

8 Gagné and Parizeau

operators like Mutate, Reproduce, Fight, Move, and Die, that change both the

number of prototypes and their position over time.

A natural GA representation for prototype selection is to use bit strings, where

each bit position is associated with a distinct sample of the training set. A value of 1

indicates that the corresponding sample is selected as a prototype, while a 0 signifies

that the sample is rejected. There are two optimization objectives: to minimize the

number of prototypes and to maximize the recognition rate. These objectives are

contradictory as selecting fewer prototypes often leads to lower recognition rates,

as observed in Table 2. In population-based multi-objective optimization, there is a

set of non-dominated solutions for which no other in the population possess better

values for all objectives. Such trade-off solutions are called Pareto optimal10. In

the objective space, the curve that passes through every Pareto optimal solution is

called the Pareto front. For this work, the non-dominated solutions consist of the

optimal trade-off points on the Pareto front where there is no solution with both a

better recognition rate and a smaller prototype set size.

The single objective fitness measure used by Ho et al.23 and by Kuncheva and

Jain30 is a weighted sum of the recognition rate and the number of selected pro-

totypes (and features). The use of a multi-objective fitness measure and a natural

selection algorithm based on Pareto optimality has the advantage of removing any

bias induced by a human-engineered weighted sum, and thus of postponing decision

on the best recognition rate / prototypes reduction ratio to the end of the opti-

mization process. Furthermore, it adds a uniform pressure amongst both objectives

during the optimization process to remove any early bias, induced by arbitrary

weight values, toward a specific region of the Pareto front. Depending on the con-

text, the practitioners can then select a final solution with a different recognition

rate / prototype set reduction ratio trade-off.

For each generation, the best-of-generation individual is the one with the highest

recognition rate on the fitness evaluation set. At the end of a run, the best-of-run

individual is selected as the one with the highest recognition rate on the validation

data set among the best-of-generation individuals. This allows the individual that

performs the best overall to be selected, without overfitting the data sets. This

methodology is used for all subsequent experiments.

Even though this methodology for selecting the best-of-run individual may dis-

card some useful information contained in the multi-objective optimization process,

three arguments can be made in its favor. First, as indicated by Occam’s razor15,

at equal recognition rates, the simplest solution should be selected. This principle

is respected here by the use of the non-dominated criterion such that the best-of-

generation individual is the solution with the best selection rate given the achieved

recognition rate. Second, caution should be exercised in order to limit the use of the

validation set, as the more individuals tested on this set, the higher the probability

of overfitting it, as argued by Jensen and Cohen26. Finally, solutions in regions

of the Pareto front with a strong selection/low recognition trade-off are likely to

include the selection of some essential prototypes for classification. It can thus be

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 9

Table 3. Prototype selection with multi-objective GA for a 1-NN classifier with L2 metric and no

input feature space normalization.

Best of 10 Mean of 10

Rec. Sel. Rec. Sel.

Data Set Baseline Shift Rate Shift Rate

Overlapped 69.6% +2.4% 60.8% +6.4% 60.0%

Slanted 80.0% −1.6% 46.4% −0.8% 67.6%

Jagged 94.2% +0.6% 66.0% +0.7% 67.1%

Spirals 81.4% −4.1% 65.6% −5.1% 75.4%

speculated that mixing them by crossover with other solutions representing differ-

ent trade-offs may induce a valuable evolution dynamic, by improving the selection

rate of all individuals of the population while maintaining the recognition rate.

In this paper, all software implementations involving EC are based on the Open

BEAGLE C++ framework19,20, freely available on the Internet. Table 3 summarizes

the results obtained on our four synthetic data sets when using a multi-objective GA

for prototype selection with an L2 metric and no input feature space normalization.

Column “Best of 10” is the result for the best of the best-of-run individuals obtained

in 10 independent runs of the GA, while column “Mean of 10” is the average for the

same 10 best-of-run individuals. It is important to note that “best of” is determined

from the validation set recognition rate, not on the selection rate, nor on the test

set recognition rate. It is thus possible to observe lower recognition rates in the

“Best of 10” column compared to the “Mean of 10” column, given that the best

solution on the validation set is not necessary the best on the test set.

The algorithm used for the multi-objective selection is the Niched Pareto Genetic

Algorithm 2 (NPGA2)17. The GA parameters are: population size of 1000, 100

generations, NPGA2 tournament selection with 2 individuals and a niche radius

(σshare) of 1.0, a priori probability of 0.75 for bits to be initialized with 1, uniform

crossover probability of 0.3, and per bit mutation probability of 0.01. Results show

significant recognition rate improvements for the overlapped data set. Since this

data set is composed of overlapping clouds of points, the prototype selection tends

to eliminate samples that are inducing misclassifications. Strangely, the recognition

rate is slightly worse than the baseline for the slanted data set. Recognition rate

improvements for the jagged set are very small. This is not surprising since the

classes do not overlap for this data set. The selection rate found is not as good as

for Hart’s condensing. For spirals, recognition goes down slightly but the selection

rate for this data set is good. Figure 4 presents the Pareto fronts associated with

the “Best of 10” results of Table 3. These Pareto fronts illustrate the fact that

non-dominated solutions obtained at the end of an evolution cover an important

range of recognition/selection rate trade-offs.

In general, results presented here demonstrate that prototype selection can lead

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

10 Gagné and Parizeau

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recognition Rate

P
ro

to
ty

pe
s

S
el

ec
tio

n
R

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recognition Rate

P
ro

to
ty

pe
s

S
el

ec
tio

n
R

at
e

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recognition Rate

P
ro

to
ty

pe
s

S
el

ec
tio

n
R

at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recognition Rate

P
ro

to
ty

pe
s

S
el

ec
tio

n
R

at
e

(c) (d)

Fig. 4. Pareto fronts for our “Best of 10” evolutions for (recognition rates are for the fitness

evaluation data sets): (a) overlapped data; (b) slanted data; (c) jagged data; and (d) spirals data.

to recognition rate improvements, while attaining sustainable selection rates. Com-

pared to the results obtained with Wilson’s editing and Hart’s condensing algo-

rithms, recognition rates are preserved and sometimes improved, mainly due to

Pareto optimal-based natural selection and the best-of-run selection strategy. On

the other hand, prototype selection rates are not comparable to the ones achieved

with Hart’s condensing algorithm, for the same best-of-run selection strategy. If

a practitioner wants to achieve a given recognition/selection ratio, it is possible

to trace the Pareto front of solutions and choose the one nearest to the desired

trade-off. Results presented in Figure 4 illustrate this point by showing that trade-

offs different from those obtained with Wilson’s editing and Hart’s condensing can

be achieved. Moreover, it is clear that the Darwinian search process of GA al-

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 11

lows a richer exploration of different prototype selections. As usual with EC, the

disadvantages of the approach are its stochastic nature which does not guarantee

convergence nor replicability of the results, and the high computational burden of

the fitness evaluation process. On an off-the-shelf PC (AMD Athlon 1.2 GHz), it

takes about half an hour to evolve such prototype selection with GA, compared

to a few seconds for deterministic heuristics such as Wilson’s editing and Hart’s

condensing.

Also, this approach for prototypes selection may not scale very well for large

data sets as the number of bits in the bit strings is proportional to the data set size.

But more appropriate approaches for large data sets could be devised. For example,

variable-length integer-valued vectors could be evolved, where the integers represent

indices of the selected prototypes. This representation, combined with a multi-

objective minimization of the number of prototypes, would allow better scalability

by having integer-valued vectors of size equal to the reduced prototype set size.

5. Genetic Programming of Neighborhood Proximity

Genetic programming enables the evolution of programs using a problem-specific in-

struction set2. In the context of pattern recognition, it can be used to automatically

design a problem-specific model of the data. For the NN classifier, this modeling

can be done by evolving neighborhood proximity measures in order to maximize

recognition rates. This allows great flexibility by going beyond the usual parametric

linear modeling of the data.

Relevant literature includes the work of Demiröz and Güvenir14 who used GA

to evolve the weights of each feature in a Euclidean metric space. In Raymer et

al.36, a linear transformation matrix of dimensions n×m is evolved, where n is the

original input space size, m is the transformed input space size, and m < n, in order

to reduce dimensionality of the feature space used in k-NN classification. This is

not an explicit neighborhood proximity evolution, but it is pertinent to this work

as it targets the development of a problem-specific model of the data, by applying a

linear transformation on the input space. On the other hand, for the application of

GP to the engineering of features in the context of pattern recognition, the works

of Sherrah et al.38,39, Bot6, and Krawiec29 use GP for the construction of high-level

features from raw features, in order to improve the classification rate on a given

data set. The function and terminal sets used in Sherrah et al. (1996)38 and by Bot6

only allow a linear construction of high-level features from raw ones, while Sherrah

et al. (1997)39 and Krawiec29 takes advantage of non-linear functions, which can be

of great value. Recently, Smith and Bull40 used a similar approach to the previous

ones6,29,38,39 for high-level features construction with GP, over which a selection of

the GP-generated features is done by a bit string GA in order to generate the final

features set.

In order to evolve genetic programs with GP2, the data type and the program-

ming primitives (instructions) must first be defined. It is proposed here that data

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

12 Gagné and Parizeau

be either n-dimensional vectors, where n corresponds to the feature space size, or

scalars as a special case. To ensure the closure property of our evolved programs,

however, all GP primitives are designed to handle combinations of both scalars and

vectors. Scalars are simply converted to vectors by copying their value into each of

the n vectorial dimensions.

Table 4 enumerates the complete primitive set that was used for all GP evolu-

tions. It includes arithmetic primitives such as +, −, × and ÷; maximum, minimum

and average functions applied on two arguments; length metrics such as Manhat-

tan, Euclidean and L∞; n-to-1 functions that extract the sum, the maximum, or the

minimum of a vector’s components, and ephemeral random rotation function. The

terminals used are ephemeral random binary vectors; ephemeral random scalars in

the range [−1, 1]; maximal, minimal, and average vector of the prototype set; spe-

cific prototype input vectors; and unknown input vectors. When the result received

from the root of a program is a vector of size n, this vector is transformed into a

scalar using the L1 norm.

A multi-objective fitness measure is used for the neighborhood proximity evo-

lution to simultaneously maximize recognition rate and minimize tree size. This

approach has the advantage of favoring small trees to promote the emergence of

simple models of the data. Common intuition is that simple models are usually more

general. Iba et al.25 proposed to use the number of nodes in the GP trees as an

estimator of their complexity based on the minimum description length principle37.

Another important advantage is to contain the bloat phenomenon2,42, which tends

to make the trees larger and larger, from generation to generation. The approach

taken here in effect restricts code growth by the use of multi-objective selection,

much like it is done in Langdon31, Bleuler et al.5, and de Jong et al.13, which all use

the GP program size as an objective to minimize. Just as for prototype selection

with GA, the best-of-run individual is selected as the one with the highest recog-

nition rate on the validation set using the best-of-generation individuals found for

the fitness evaluation set.

Results for GP engineered neighborhood proximity measures are given in Ta-

ble 5 for our four synthetic data sets. Parameters used for the experiments are:

population size of 1000, 100 generations, NPGA2 selection tournaments with 2

participants and a niche radius (σshare) of 1.0, crossover probability of 0.9, shrink

mutation probability of 0.05, node swap mutation probability of 0.05, sub-tree mu-

tation probability of 0.05 and maximum tree depth of 17. Results show good im-

provements in recognition rates for overlapped, slanted and spiral data, compared

to baseline results. Compared with results obtained with the best classic configura-

tions presented in Table 1, improvements are significantly better using the evolved

proximity measures for the spiral data set, slightly better for the overlapped set,

but a little worse for the slanted data set. The latter result stems from the fact that,

in this case, the whitening transform used by the best standard 1-NN is already

optimal for this data set.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 13

Table 4. Primitives used for the GP evolutions of neighborhood proximity measures (x, y, and z

represent n dimensional vectors; scalars are automatically converted to vectors).

Name Args Description

ADD 2 Vector addition: ADD(x,y) = x + y.

SUB 2 Vector subtraction: SUB(x,y) = x − y.

MUL 2 Vector dot-multiplication: MUL(x,y) = z, with zi = xi×yi,∀i ∈

{1, . . . , n}.

DIV 2 Protected vector dot-division27: DIV(x,y) = z, with zi =

xi/yi,∀i ∈ {1, . . . , n} if yi 6∈ [−0.001, 0.001], and zi = 1.0 other-

wise.

MAX 2 Vector dot-maximum: MAX(x,y) = z, with

zi = max(xi, yi),∀i ∈ {1, . . . , n}.

MIN 2 Vector dot-minimum: MIN(x,y) = z, with zi = min(xi, yi),∀i ∈

{1, . . . , n}.

MEA 2 Vector average: MEA(x,y) = (x + y)/2.

MAN 1 L1 norm of a vector: MAN(x) =
∑n

i=1 |xi|.

EUC 1 L2 norm of a vector: EUC(x) = (
∑n

i=1(xi)
2)0.5.

LIF 1 L∞ norm of a vector: LIF(x) = max(|x1|, . . . , |xn|).

SUM 1 Sum of vector components: SUM(x) =
∑n

i=1 xi.

MXV 1 Maximum vector component: MXV(x) = max(x1, . . . , xn).

MIV 1 Minimum vector component MIV(x) = min(x1, . . . , xn).

ROT 1 Perform random rotation of a vector. If the argument is a scalar,

return it unchanged. Otherwise generate a random rotation ma-

trix using n− 1 angles randomly generated in interval [0, π], and

return the corresponding rotated vector. Rotation matrices are

generated either during initialization or through mutations, in a

similar way as the ephemeral random constant27.

EBV 0 Vector of binary ephemeral random constants27: EBV = z, with

zi ∈ {0, 1},∀i ∈ {1, . . . , n}.

ESC 0 Vector of ephemeral random constants27: ESC = z, with zi ∈

[−1, 1],∀i ∈ {1, . . . , n}.

PMX 0 Maximal vector of the prototype set; in 2D, this is the upper

right corner of the data set bounding box.

PMI 0 Minimal vector of the prototype set; in 2D, this is the lower left

corner of the data set bounding box.

PME 0 Average vector of the prototype set.

P 0 Instance of the prototype set.

I 0 Unknown input vector value.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

14 Gagné and Parizeau

Table 5. Performance of GP engineered neighborhood proximity measures for the 1-NN classifier

on synthetic data sets (input feature space not normalized).

Best Best of 10 Mean of 10

Data Set Baseline Classic Rec. Shift Rec. Shift

Overlapped 69.6% +2.4% +8.0% +6.8%

Slanted 80.0% +8.8% +4.8% +5.3%

Jagged 94.2% 0.0% +0.6% +0.6%

Spirals 81.4% −2.0% +8.3% +6.1%

The following s-expression is an example of a distance measure obtained by GP:

(MAN (MEA P (DIV I PME)))

It corresponds to the overall best solution found for the overlapped set. The value

of the PME terminal for that training set being [−0.382 − 0.00781]T , the expression

can be re-interpreted as follows:

doverlapped(x,p) =

∣

∣

∣

∣

p1 − 2.62x1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

p2 − 128x2

2

∣

∣

∣

∣

,

where the relative weight of the second data component is almost 50 times larger

than that of the first component, effectively discarding the latter in favor of the

former for classification decision.

6. Co-evolution of Nearest Neighbor Classifiers

Section 4 presents a method for the design of 1-NN classifiers by a selection of

prototypes using a multi-objective GA. Follows in Section 5 a distinct method for

the design of neighborhood proximity measure with GP. These two approaches are

totally independent; it is possible to select prototypes for any kind of neighborhood

proximity, and vice versa. But what about simultaneous prototype selection and

neighborhood proximity evolution? This is possible through co-evolution.

Co-evolution in the context of EC can be defined as several populations, some-

times called species, evolving simultaneously with interaction between them such

that the fitness evaluation operation of one species depends on the evolution

state of the other. Co-evolution is generally classified into two main categories: 1)

competitive22, where the co-evolving species are guided by opposite goals, thus the

good performance of one species hurting the performance of the other species; and

2) cooperative35, where the species are evolving together in order to solve different

parts of the same problem.

For this work, we examine both strategies. First, there is cooperative co-

evolution of prototype selection using a multi-objective GA, as in Section 4, in

conjunction with a GP engineered neighborhood proximity measure, as explained

in Section 5. The fitness evaluation for the prototype selection species is done by

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 15

Table 6. Co-evolution of prototype selection and neighborhood proximity for 1-NN classifiers.

Results marked by a † (data set Spirals) are not statistically different from those of the baseline
according to a 95% confidence Student’s t-test.

Best of 10 Mean of 10

Best Rec. Sel. Rec. Sel.

Data Set Baseline Classic Shift Rate Shift Rate.

Overlapped 69.6% +2.4% +8.8% 55.2% +6.6% 54.6%

Slanted 80.0% +8.8% +8.0% 65.6% +2.2% 65.5%

Jagged 94.2% 0.0% +0.6% 64.8% +0.9% 64.0%

Spirals† 81.4% −2.0% +8.3% 72.9% +1.7% 70.0%

computing the recognition rate for each individual using the best proximity measure

of the previous generation. For the proximity measure species, this fitness is com-

puted from the recognition rate for each individual using the best prototype set of

the previous generation. For the first generation, reference individuals are selected

randomly in the respective species. This approach can be qualified as optimistic

collaboration credit assignment43.

Results of the co-evolution of prototype selection and neighborhood proximity

are presented in Table 6. Parameters are the same as those presented in previous

sections for their respective species. Results show that it is possible to achieve

recognition rates comparable to those of Table 5, while removing up to 45% of the

initial prototype set.

Second, we introduce a third species that is competitively evolving with the two

previous ones. This third species is made of bit strings of the size of the fitness

evaluation data set. Each bit in this string indicates whether the corresponding

sample in the data set is used or not for fitness evaluation. The number of true bits

in each bit string is kept constant. The bit string initialization, uniform crossover,

and bit flip mutation operators are modified in such a way that the number of true

bits in each string is always preserved. These are small modifications to the classical

operations coded by working on bit indices instead of bit values. For instance,

the initialization proceeds by drawing randomly, without replacement, as much

indices of true bits as prescribed by the problem. The mutation is done by drawing

without replacement n indices of true bits to flip and n indices of false bits to

flip, where n is equal to the number of true bits of each string times the bit flip

mutation probability. Finally, the uniform crossover proceeds by collecting indices

of disagreement between bits of the two parent’s bit strings and dividing them

into two categories, the false-true category (first parent bit value is false, second

parent bit value true) and the opposite true-false category. For each of these two

categories, the indices of the bits are distributed equally to generate children such

that the number of true bits is preserved.

The fitness measure has a single objective which is to minimize the recognition

rate. Individuals of this third species are mated with individuals of the two other

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

16 Gagné and Parizeau

Table 7. Three species co-evolution of cooperative prototype selection and neighborhood proximity

against evaluation data subset selection in the context of 1-NN classifiers. Results marked by a
† (data set Spirals) are not statistically different from those of the baseline according to a 95%
confidence Student’s t-test.

Best of 10 Mean of 10

Best Rec. Sel. Rec. Sel.

Data Set Baseline Classic Shift Rate Shift Rate

Overlapped 69.6% +2.4% +7.2% 20.8% +5.7% 30.3%

Slanted 80.0% +8.8% +6.4% 55.2% +4.2% 56.8%

Jagged 94.2% 0.0% +1.2% 57.0% +0.8% 60.3%

Spirals† 81.4% −2.0% +11.3% 66.7% +2.2% 65.9%

species following a maximum credit assignment strategy: each individual of this

third species, a selection of hard samples in the fitness evaluation set, is evaluated

against the best prototype selection and neighborhood proximity found in the pre-

vious generation, while the hardest evaluation subset of the previous generation is

used to evaluate the fitness of individuals in the two other species. The best-of-run

pair of the prototype set and neighborhood proximity is determined by evaluat-

ing each best-of-generation pair with the complete validation set and by keeping

the best performing pair. Figure 5 presents this algorithm in greater detail for the

co-evolution of three species.

The use of a competitive co-evolution for fitness cases selection has first been

experimented by Hillis22. Much later, Panait and Luke34 explored the idea in the

context of evolving robust programs, with conclusive results for classical GP prob-

lems. Recent developments on competitive co-evolution propose the use of some

form of Pareto dominance relation between the members of the different species12.

This allows an “ideal” evaluation of the co-evolving individuals, at the cost of in-

creased computations by comparing all combinations of individuals from different

species.

Table 7 presents the results of the cooperative co-evolution of prototype selection

and neighborhood proximity against a competitive evaluation data subset. In all

cases, the competitive species evolved with each individual selecting 50% of the

data in the evaluation set as fitness cases. The competitive fitness evolved with

a population size of 1000, a uniform crossover probability of 0.3, and a bit flip

mutation probability of 0.05. Parameters of the other two evolving species are the

same as those used previously.

Results clearly show that using a third co-evolving species for selecting an eval-

uation set significantly reduces the numbers of prototypes selected, especially for

the overlapped data set. Compared with the two species evolution, recognition

rates are slightly reduced for overlapped and slanted data sets, but are increased

for jagged and spirals. Overall, it can be concluded that the introduction of the

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 17

(1) Initialize generation counter, g = 1;

(2) Generate random initial populations for distance measures (H), prototype

selection (P), and fitness case selection (Q), respectively:

H1 = {Hi
1}, i = 1, . . . ,mH

P1 = {P i
1}, i = 1, . . . ,mP

Q1 = {Qi
1}, i = 1, . . . ,mQ

(3) Select a random individual:

H∗
0 = Hj

1 , j = rand(1,mH)

P ∗
0 = P j

1 , j = rand(1,mP)

Q∗
0 = Qj

1, j = rand(1,mQ)

(4) Evaluate each species of this generation using the best individual of the

other two species for the previous generation:

fH(Hi
g) = Frec(H

i
g, P

∗
g−1, Q

∗
g−1), i = 1, . . . ,mH

fP (P i
g) = Frec(H

∗
g−1, P

i
g, Q

∗
g−1), i = 1, . . . ,mP

fQ(Qi
g) = (1 − Frec(H

∗
g−1, P

∗
g−1, Q

i
g)), i = 1, . . . ,mQ

(5) If g = gmax, then stop;

(6) Find best individual for all species:

H∗
g = Hj

g , j = argmax
i=1...mH

(fH(Hi
g))

P ∗
g = P j

g , j = argmax
i=1...mP

(fP (P i
g))

Q∗
g = Qj

g, j = argmax
i=1...mQ

(fQ(Qi
g))

(7) Apply operations of natural selection, crossover, and mutation to all species;

(8) g = g + 1;

(9) Loop to step 4.

Fig. 5. Algorithm of the three species co-evolution. Function Frec(H, P, Q) evaluates the recogni-
tion rate of distance measure H over fitness case set Q using prototype set P .

co-evolving third species enhances the generalization capacity of the recognition

system. Moreover, the third species reduces the number of evaluation test cases

toward a significantly smaller number of prototypes, which contributes to reduc-

ing computational requirements, from 50% to 90% depending on the data set and

specific evolution.

Figure 6 presents the box plots that stem from a one-way analysis of variance

(ANOVA) of the test set recognition rates obtained with the synthetic data sets.

It can be seen from these plots that the results for prototypes selection with GA

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

18 Gagné and Parizeau

Proto. sel. GP dist. 2 species 3 species

72

73

74

75

76

77

78

79
T

es
t s

et
 r

ec
og

ni
tio

n
ra

te

Proto. sel. GP dist. 2 species 3 species

78

80

82

84

86

88

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

(a) (b)

Proto. sel. GP dist. 2 species 3 species

94

94.5

95

95.5

96

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

Proto. sel. GP dist. 2 species 3 species

75

80

85

90

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

(c) (d)

Fig. 6. One-way analysis of variance (ANOVA) box plots of the test set recognition rates obtained

with the synthetic data sets: (a) overlapped set, (b) slanted set, (c) jagged set, and (d) spirals
set. The center box is bounded by the first and third quartiles of the data distribution, with
the median as the central line in the box. The notches surrounding the median show the 95%

confidence interval of this median. The whiskers above and below the boxes represent the spread
of the data value within 1.5 times the interquartile range, with the + symbol showing outliers.

are worse than the three other approaches. Genetic programming of neighborhood

distance, with and without co-evolution of prototypes selection, are the best per-

forming approaches, followed by the three species co-evolution approach. For the

three approaches involving GP, the baseline results are within the lowest quartile,

which strengthen the statistical significance of the results.

7. Results on Real Data

In this section, the previous co-evolutionary approaches are re-investigated with

five data sets taken from the UCI Machine Learning Repository4. These data sets

are summarized in Table 8. Again, each data set is randomly partitioned into four

equal size sub-sets (i.e. train, fitness evaluation, validation and test), just as for

the synthetic data. Table 9 presents the baseline and best results obtained from

classical 1-NN classifiers on these data sets, using the full training sets as prototypes,

selecting the best 1-NN configuration from the fitness evaluation and validation sets

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 19

Table 8. Description of machine learning repository’s data sets (ML data sets) chosen for perfor-

mance evaluation of 1-NN classifier co-evolution.

Data Set Size Attr. Classes Application Domain

abalone 4177 8 29 Abalone age prediction from physical

measurements.

cmc 1473 9 3 Contraceptive method choice prediction

from demographic and socio-economic

characteristics.

ionosphere 351 34 2 Structure detection in ionosphere from

radar return signals.

pid 768 8 2 Diabetes diagnostic on female Pima In-

dians from general medical measure-

ments.

spambase 4601 57 2 Non-junk/junk

e-mail classification from specific word

or character counts.

Table 9. ML data baseline and best classic configuration 1-NN classification rates on test sets.

Baseline Best Classic Configuration

Data Set (L2) Distance Normalization Rec. Shift

abalone 49.2% L1 Scaling −0.7%

cmc 44.2% L∞ Scaling +0.3%

ionosphere 84.1% L∞ No +2.3%

pid 66.7% L2 Scaling −1.0%

spambase 77.8% L1 Scaling +10.4%

and giving results for the test sets. Likewise, Table 10 gives results on the same data

sets with Wilson’s editing and Hart’s condensing.

First, simultaneous co-evolution of prototype selection with multi-objective GA

and neighborhood proximity with GP has been conducted on the ML data sets

as shown in Table 11. Results show significant recognition rate improvements for

cmc and ionosphere data sets compared to the baseline as well as the best classic

configurations of Table 9. For spambase, +13.5% is gained against the baseline,

even though it is only about 3% better than the best classic configuration. The

pid data set appears harder with a recognition gain of only +1%. The best classic

configuration confirms this with a −1% over the baselinea. For the abalone data

aReaders should keep in mind that the best 1-NN configuration is selected from the validation
set, with results provided on the test set.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

20 Gagné and Parizeau

Table 10. Recognition and selection rates obtained on ML data sets using Wilson’s editing, Hart’s

condensing and Wilson’s editing followed by Hart’s condensing; k = 1 with L2 metric and no
normalization.

Wilson’s editing Hart’s condensing Wilson + Hart

Rec. Sel. Rec. Sel. Rec. Sel.

Data Set Baseline Shift Rate Shift Rate Shift Rate

abalone 49.2% +3.6% 48.1% −0.9% 68.7% +3.0% 17.2%

cmc 44.2% +1.6% 39.1% −0.5% 73.6% +3.0% 15.0%

ionosphere 84.1% −4.5% 86.2% +1.1% 29.9% 0.0% 11.5%

pid 66.7% +4.2% 70.8% −4.7% 46.4% +1.6% 14.1%

spambase 77.8% −0.6% 74.0% −3.8% 44.5% −2.6% 15.7%

Table 11. Two species co-evolution of prototypes selection with multi-objective GA and distance
measure with GP for 1-NN classification on ML data sets. Results with the data sets marked by a
† are not statistically different from those of the baseline according to a 95% confidence Student’s
t-test.

Best of 10 Mean of 10

Best Rec. Sel. Rec. Sel.

Data Set Baseline Classic Shift Rate Shift Rate

abalone† 49.2% −0.7% +4.5% 55.9% −3.7% 56.7%

cmc 44.2% +0.3% +10.0% 59.8% +5.6% 60.2%

ionosphere 84.1% +2.3% +8.0% 60.9% +6.0% 54.6%

pid† 66.7% −1.0% +1.0% 38.0% +1.1% 57.1%

spambase 77.8% +10.4% +13.5% 59.9% +13.2% 57.5%

set, there is an important variation in recognition rates, going from an average of

−3.7% to a maximum of +4.5%. This may be explained by the high number of

classes of this data set, where each class is the age of an abalone. It might have

been better to design a fitness function that gives some credits to classifications

that are close (±1 year) to the real class labels. Finally, the selection rates obtained

for all data sets is between 55% and 60%, with an exception for the best pid result

(38%).

Second, the ML data sets are also tested using a three species co-evolution. For

this experiment, the size of the fitness evaluation data set was restricted to either

50% of the original set, or to 200 for larger data sets (abalone and spambase).

Presented in Table 12, results for the abalone, ionosphere and spambase data sets

show a small decrease of performance in recognition rates, from −1% to −3%,

compared with the two species co-evolution. For the cmc data set, the drop in

recognition rate is more significant at −6.7% for the best result and −4.5% on

average. Conversely, there is an improvement of +4.7% for the best pid data set,

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 21

Table 12. Three species co-evolution of prototypes selection with multi-objective GA, evaluation

set with GA, and distance measures with GP for 1-NN classification on ML data sets. Results
with the data sets marked by the † symbol are not statistically different from those of the baseline
according to a 95% confidence Student’s t-test.

Best of 10 Mean of 10

Best Rec. Sel. Rec. Sel.

Data Set Baseline Classic Shift Rate Shift Rate

abalone† 49.2% −0.7% +2.6% 37.9% −2.6% 36.4%

cmc† 44.2% +0.3% +3.3% 27.7% +1.2% 27.3%

ionosphere 84.1% +2.3% +5.7% 50.6% +4.4% 49.7%

pid† 66.7% −1.0% +5.7% 20.8% +0.4% 21.8%

spambase 77.8% +10.4% +12.7% 45.2% +12.1% 42.0%

even though the average performance results in a small drop of −0.7%. These

recognition rate fluctuations are explained mainly by improvements to the selection

rates compared to the two species co-evolution. The drop in the selection rate,

which goes from 50% for ionosphere to 20% for pid, stem from solutions that use

less information for classification and thus overfit less. This tends to confirm the

robustness effects of competitive co-evolution that were also observed elsewhere22,34.

Figure 7 presents the box plots for the ANOVA of the ML data sets. As ex-

pected, the plots for ionospere and spambase data sets show that the results are

statistically better than baseline and best classical configuration. For the cmc and

pid data sets, the baseline and best classical configuration results are within the

lowest quartile for the two species co-evolution. And finally, there is no apparent

statistical difference between the results for all the other comparisons between the

classical configurations and the evolved approaches.

8. Discussion

For this work, the NN rule was used as the classification framework to be tuned

by EC. But from a more general point of view, the paper’s aim is to illustrate

the idea that EC can be useful for fine tuning pattern recognition systems. This

is not to say that EC can be used directly as the basis of any efficient recognition

system: well established classification methods based on strong theoretical models

perform very well in most situations. As the no free lunch theorems45 indicate, a

pure EC approach will probably not be able to surpass a domain-specific approach.

However, EC are very generic and can be useful to hybridize classical classification

approaches in order to circumvent their inherent limitations. Designing a good

pattern recognition system usually goes beyond the task of training and testing

a classifier. The working hypothesis of the classification methods are sometimes

very strong and hard to obtain in practice. Domain knowledge is also often needed

to extract the most discriminant features from raw data. EC can be very useful

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

22 Gagné and Parizeau

2 species 3 species
15

20

25

30

35

40

45

50

55

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

2 species 3 species
40

42

44

46

48

50

52

54

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

(a) (b)

2 species 3 species

80

85

90

95

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

2 species 3 species

62

64

66

68

70

72

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

(c) (d)

2 species 3 species
88.5

89

89.5

90

90.5

91

91.5

92

T
es

t s
et

 r
ec

og
ni

tio
n

ra
te

(e)

Fig. 7. One-way analysis of variance (ANOVA) box plots of the test set recognition rates obtained

with the ML data sets: (a) abalone set, (b) cmc set, (c) ionosphere set, (d) pid set, and (e)
spambase set.

in these cases to transform the original problem into a form that will allow the

best performance of the classifier. The hybridization of EC with classifiers can

be achieved is several ways to finely tune the system: bit string GA for element

selection, real-valued GA for function optimization, GP for evolving the system’s

model, and so on. Moreover, co-evolution can be used to simultaneously optimize

these different sub-systems.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 23

Computationally speaking, as for most problems tackled with EC, the bottle-

neck lies in the fitness evaluations. This is especially true for the actual case given

that NN classification complexity grows quadratically with the data set size. For

example, 250000 measures of distance are computed for each fitness evaluation on

the jagged set when using the complete training subset (500 instances) and the

complete evaluation subset (500 instances). On a standard PC (AMD Athlon 1.2

GHz), the run time required for a single evolution ranges from an hour up to several

days, depending on the data set used. To preserve tractability for large data sets,

sampling of the data set must be conducted for fitness evaluation as it was done

here with the co-evolution of prototype and fitness case selection. But the method

presented here has been designed for improving generalization rather than reducing

computational complexity. For large data sets, more aggressive approaches can be

devised to preserved tractability, for an example of this see the paper of Song et

al.41.

9. Conclusion

This paper has introduced different ways of optimizing a Nearest Neighbor (NN)

classifier using Evolutionary Computations (EC). First, a bit-string Genetic Algo-

rithm (GA) was used to select prototypes in a training set. The optimization process

is guided by two objectives: maximize recognition rate and minimize the size of the

prototype set. A Pareto-based selection operation is proposed to simultaneously

optimize all objectives and postpone to the end of the optimization process the

trade-off between these two objectives. Results show that the multi-objective GA

was able to select subsets of the training sets that achieve recognition rates equal or

better to those obtained with the whole training data. Classical approaches for pro-

totype selection achieve better selection rates, but at the expense of the recognition

rates. Regarding the Pareto fronts, as shown in Figure 4, solutions with different

recognition rate / prototypes set size ratio can be selected according to the needs

of the practitioners.

Second, a Genetic Programming (GP) based approach was proposed for evolv-

ing data-specific neighborhood proximity measures, thus capturing the underlying

model of the data. This is an important paradigm shift where the model itself is

evolved, rather than the model’s parameters, as in most previous approaches. Re-

sults are either better or comparable to those obtained from the best NN classifier

when using a classic feature space normalization method.

Finally, cooperative and competitive co-evolution was also used to integrate the

two previous approaches. A two species cooperative strategy delivered recognition

rates comparable to those of the GP approach alone, while reducing the number of

prototypes to levels comparable to the GA approach. This illustrates the interesting

property of co-evolution, that allows different elements of a problem to evolve simul-

taneously with results as good as those obtained from isolated evolutions. A third

competitive species was introduced, to induce an arms race between an evaluation

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

24 Gagné and Parizeau

data selection species and the two cooperative prototype selection and proximity

measure species. In this way, the risk of overfitting the fitness evaluation data is

much reduced. Moreover, even though recognition results were sometimes a little

lower with this strategy, the evolved prototype sets were also much smaller.

Acknowledgments

This work was supported by NSERC-Canada and FQRNT-Québec. The authors

are also grateful to Annette Schwerdtfeger for proofreading this manuscript and

Jiachuan Wang for her early participation to the project.

References

1. T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol, UK, 2000.

2. W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming – An
Introduction; On the Automatic Evolution of Computer Programs and its Applications.
Morgan Kaufmann, dpunkt.verlag, 1998.

3. Julie Beaulieu, Christian Gagné, and Marc Parizeau. Lens system design and re-
engineering with evolutionary algorithms. In Proc. of the Genetic and Evolutionary
Computations Conf. (GECCO 2002), pages 155–162, New York (NY), USA, 2002.

4. C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/˜mlearn/MLRepository.html, 1998.

5. Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Multiobjective ge-
netic programming: Reducing bloat using SPEA2. In Proc. of the IEEE Congress on
Evolutionary Computation (CEC 2001), pages 536–543. IEEE Press, 2001.

6. Martijn C. J. Bot. Feature extraction for the k-nearest neighbour classifier with genetic
programming. In Proc. of the European Conf. on Genetic Programming (EuroGP
2001), volume 2038 of LNCS, pages 256–267. Springer-Verlag, 2001.

7. Henry Brighton and Chris Mellish. Advances in instance selection for instance-based
learning algorithms. Data mining and knowledge discovery, 6(2):153–172, 2002.

8. J. R. Cano, F. Herrera, and M. Lozano. Using evolutionary algorithms as instance
selection for data reduction in KDD: an experimental study. IEEE Trans. on Evolu-
tionary Computation, 7(6):561–575, December 2003.

9. Jian-Hung Chen, Hung-Ming Chen, and Shinn-Ying Ho. Design of nearest neighbor
classifiers: Multi-objective approach. Intl. Journal of Approximate Reasoning, 40:3–22,
2005.

10. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

11. T.M. Cover. Estimation by the nearest neighbor rule. IEEE Trans. on Information
Theory, 14(1):50–55, 1968.

12. Edwin D. de Jong and Jordan B. Pollack. Ideal evaluation from coevolution. Evolu-
tionary Computation, 12(2):159–192, 2004.

13. Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat and
promoting diversity using multi-objective methods. In Proc. of the Genetic and Evolu-
tionary Computation Conf. (GECCO 2001), pages 11–18, San Francisco (CA), USA,
2001. Morgan Kaufmann.

14. Gülsen Demiröz and H. Altay Güvenir. Genetic algorithms to learn feature weights
for the nearest neighbor algorithm. In Proc. of the Belgian-Dutch Conf. on Machine
Learning (BENELEARN 1996), pages 117–126, 1996.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 25

15. Pedro Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and
Knowledge Discovery, 3:409–425, 1999.

16. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley & Sons, Inc., New York, second edition, 2001.

17. Mark Erickson, Alex Mayer, and Jeffrey Horn. The niched pareto genetic algorithm 2
applied to the design of groundwater remediation systems. In Proc. of the Intl. Conf.
on Evolutionary Multi-Criterion Optimization (EMO 2001), pages 681–695, 2001.

18. Fernando Fernández and Pedro Isasi. Evolutionary design of nearest prototype clas-
sifiers. Journal of Heuristics, 10(4):431–454, 2004.

19. Christian Gagné and Marc Parizeau. Genericity in evolutionary computation soft-
ware tools: Principles and case-study. Intl. Journal on Artificial Intelligence Tools,
15(2):173–194, April 2006.

20. Christian Gagné and Marc Parizeau. Open BEAGLE W3 page.
http://beagle.gel.ulaval.ca, 2006.

21. Peter E. Hart. The condensed nearest neighbor rule. IEEE Trans. on Information
Theory, 14:515–516, 1968.

22. W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D, 42:228–234, 1990.

23. Shinn-Ying Ho, Chia-Cheng Liu, and Soundy Liu. Design of an optimal nearest
neighbor classifier using an intelligent genetic algorithm. Pattern Recognition Letters,
23(13):1495–1503, November 2002.

24. J. M. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

25. Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programming using a minimum
description length principle. In Kenneth E. Kinnear, editor, Advances in Genetic
Programming, Complex Adaptive Systems, pages 265–284. MIT Press, 1994.

26. David D. Jensen and Paul R. Cohen. Multiple comparisons in induction algorithms.
Machine Learning, 38(3):309–338, 2000.

27. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

28. John R. Koza, David Andre, Forrest H Bennett III, and Martin Keane. Genetic Pro-
gramming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, 1999.

29. Krzysztof Krawiec. Genetic programming-based construction of features for machine
learning and knowledge discovery tasks. Genetic Programming and Evolvable Ma-
chines, 3(4):329–343, 2002.

30. Ludmila I. Kuncheva and Lakhmi C. Jain. Nearest neighbor classifier: Simultane-
ous editing and feature selection. Pattern Recognition Letters, 20(11-13):1149–1156,
November 1999.

31. William B. Langdon. Data structures and genetic programming. In Peter J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 20,
pages 395–414. MIT Press, 1996.

32. Melanie Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive Systems.
MIT Press, 1996.

33. L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen. Feature selection using multi-
objective genetic algorithms for handwritten digit recognition. In Proc. of the Intl.
Conf. on Pattern Recognition (ICPR 2002), pages 568–571, Québec (QC), Canada,
2002.

34. Liviu Panait and Sean Luke. Methods for evolving robust programs. In Proc. of the
Genetic and Evolutionary Computation Conf. (GECCO 2003), volume 2724 of LNCS,
pages 1740–1751, Chicago (IL), USA, 2003. Springer-Verlag.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

26 Gagné and Parizeau

35. Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An architecture
for evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

36. M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain. Dimension-
ality reduction using genetic algorithms. IEEE Trans. on Evolutionary Computation,
4(2):164, July 2000.

37. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.
38. Jamie Sherrah, Robert E. Bogner, and Abdesselam Bouzerdoum. Automatic selection

of features for classification using genetic programming. In Proc. of the Australian and
New Zealand Intelligent Information Systems Conf. (ANZIIS 1996), pages 284–287,
1996.

39. Jamie Sherrah, Robert E. Bogner, and Abdesselam Bouzerdoum. The evolutionary
pre-processor: Automatic feature extraction for supervised classification using genetic
programming. In Genetic Programming 1997: Proc. of the Second Annual Conf., pages
304–312, Stanford University (CA), USA, 1997. Morgan Kaufmann.

40. Matthew G. Smith and Larry Bull. Genetic programming with a genetic algorithm
for feature construction and selection. Genetic Programming and Evolvable Machines,
6(3):265–281, September 2005.

41. Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood. Training genetic pro-
gramming on half a million patterns: an example from anomaly detection. IEEE
Trans. on Evolutionary Computation, 9(3):225–239, June 2005.

42. Terence Soule and James A. Foster. Effects of code growth and parsimony pressure on
populations in genetic programming. Evolutionary Computation, 6(4):293–309, Win-
ter 1998.

43. R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. An empirical analysis
of collaboration methods in cooperative coevolutionary algorithms. In Proc. of the
Genetic and Evolutionary Computation Conf. (GECCO 2001), pages 1235–1242, San
Francisco (CA), USA, 2001. Morgan Kaufmann.

44. Dennis L. Wilson. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. on Systems, Man, and Cybernetics, 2(3):408–421, July 1972.

45. David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Trans. on Evolutionary Computation, 1(1):67–82, April 1997.

46. Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems, 13(2):44–49, 1998.

August 8, 2007 21:35 WSPC/INSTRUCTION FILE knn-paper

Co-evolution of Nearest Neighbor Classifiers 27

Christian Gagné re-
ceived B.Ing. degree in

computer engineering in
2000, and M.Sc. and
Ph.D. degrees in electri-
cal engineering in 2002
and 2005 respectively,
all from Université La-
val, Québec (Quebec),
Canada. In 2005-2006,

he was an ERCIM postdoc fellow jointly at
the TAO team of the INRIA Futurs, France,
located at the Université Paris-Sud in Or-
say, and the Information Systems Institute of
the University of Lausanne, Switzerland. Dr.
Gagné is now working as a consultant for In-
formatique WGZ Inc., in Québec (Quebec),
Canada. His research interests include evolu-
tionary computation, machine learning, and
distributed computing.

Marc Parizeau re-
ceived B.Ing., M.Sc.A.
and Ph.D. degrees all
in electrical engineering
from École Polytech-
nique, Montréal (Que-
bec), Canada in 1984,
1987, and 1992, re-
spectively. Dr. Parizeau
is a full professor of

computer engineering at Université Laval,
Québec (Quebec), Canada. He is a member
of the Computer Vision and Systems Lab-
oratory. His research interests are in pat-
tern recognition, in learning, in evolution-
ary computation, and in computer vision. He
is a member of the IEEE Computer Soci-
ety, and the Canadian Information Process-
ing and Pattern Recognition Society.

