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ABSTRACT
Many fields rely on some stochastic sampling of a given com-
plex space. Low-discrepancy sequences are methods aim-
ing at producing samples with better space-filling properties
than uniformly distributed random numbers, hence allow-
ing a more efficient sampling of that space. State-of-the-art
methods like nearly orthogonal Latin hypercubes and scram-
bled Halton sequences are configured by permutations of in-
ternal parameters, where permutations are commonly done
randomly. This paper proposes the use of evolutionary al-
gorithms to evolve these permutations, in order to optimize
a discrepancy measure. Results show that an evolution-
ary method is able to generate low-discrepancy sequences
of significantly better space-filling properties compared to
sequences configured with purely random permutations.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms
(including Monte Carlo); I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

General Terms
Performance

Keywords
Quasi-random, Orthogonal Latin Hypercube, Scrambled Hal-
ton, Discrepancy, Evolutionary Algorithms, Combinatorial
Optimization
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(b) Quasi-random

Figure 1: Space filling properties of (a) random
numbers can be significantly poorer than low-
discrepancy sequences, such as the one generated
with a (b) scrambled Halton sequence.

1. INTRODUCTION
Fields such as optimization, Monte Carlo simulations or

design of experiments often imply exploring complex high
dimensional real-valued spaces. In general, testing all possi-
bilities is computationally intractable and sampling elements
of that complex space is an appealing strategy. Pseudo-
random number generators are commonly used to sample
the space, as they are quite standard and provide numbers
following usual probability functions. But such sampling
should be done carefully, as the distribution of samples can
greatly influence the results obtained. Moreover, the volume
of the search space increases exponentially with the number
of variables, such that the number of samples required tend
to explode with the dimensionality of the problem.

Random point selection can be very disappointing as sam-
ples can be distributed in a very non-uniform manner, as
shown in Fig. 1(a). It is not possible to (repetitively) obtain
something as regular as Fig. 1(b). Quasi-random number
generators provide samples with distributions that maximize
some space-filling properties while minimizing the correla-
tion between the variables. These approaches have been
studied in many areas of computer science, for example in



integration [16], optimization [1], and learning [3].
Discrepancy is generally the accepted method to calculate

space-filling. It is a measure of proportional distribution of
samples in space, where a given region of the entire space
must contain a number of samples proportional to its vol-
ume. Broadly speaking, discrepancy is, for a rectangle, the
absolute ratio of the number of samples contained in the
rectangle with the total number of samples minus the ratio
of the volume of the rectangle with the entire volume. Given
the importance of the notion of discrepancy, quasi-random
numbers are also called low-discrepancy sequences.

Two methods are investigated in the current paper: Nearly
Orthogonal Latin Hypercubes (NOLH) and Scrambled Hal-
ton Sequences (SHS). These methods are useful in differ-
ent contexts. On one hand, NOLH provide samples that
best cover the search space, while minimizing the number
of samples used and assuring a high degree of orthogonality
between dimensions. This is very useful in situations such
as design of experiments, where each sample implies expen-
sive computation. On the other hand, SHS can provide as
many samples as necessary. This is appropriate for situa-
tions where each sample does not involve heavy processing,
or when the number of required samples may be important
or unknown in advance. It is possible in many cases to re-
place standard random number generators with SHS, and
then do a possibly more efficient exploration of the complex
space sampled. The currently accepted construction meth-
ods for those two techniques is based on a randomly shuffled
vector of indices. This paper shows that replacing random
shuffling by an evolutionary algorithm can lead to significant
improvement of the discrepancy and related mesures.

The structure of the paper goes as follows. Sec. 2 presents
how NOLH are constructed, while method for building SHS
is presented in Sec. 3. Then, discrepancy measure, used to
assess space-filling of quasi-random sequences, is presented
in Sec. 4, as well as some specific criteria used to assess spe-
cific properties of NOLH. Follows in Sec. 5 a presentation of
the evolutionary algorithm proposed to configure NOLH and
SHS, including the representation, variation operators, and
fitness measures used. Experiments with this evolutionary
algorithm are reported in Sec. 6, with comparisons made
with results obtained using random permutations, showing
the efficiency of the proposed technique. The paper finally
concludes in Sec. 7 on the possible impact of the proposed
method and the future work envisioned.

2. NEARLY ORTHOGONAL LATIN HYPER-
CUBES

Latin square sampling is defined as a distribution of two
variables containing one and only one sample in each of its
rows and columns. The Latin hypercube is the generaliza-
tion of this concept to higher dimensions. It was introduced
by McKay et al. [15] and has been widely used in com-
puter experiments since then. One weakness of this design
is that it does not guarantee that variables will not be corre-
lated, something undesirable when applying regression anal-
ysis. Ye [22] proposed a construction method of orthogonal
Latin hypercubes that guarantees zero correlation between
variables. Cioppa and Lucas [6] extended this algorithm to
incorporate more variables while maintaining a certain de-
gree of orthogonality. This last design generates the so called
Nearly Orthogonal Latin Hypercubes (NOLH). Cioppa and

Order (m) Dimensionality (k) Runs (n)
4 7 17
5 11 33
6 16 65
7 22 129

Table 1: Dimensionality k and number of runs n as
function of the order m of a nearly orthogonal Latin
hypercube.

Lucas’ algorithm is used as the base of the work presented
in this paper, and is thus further detailed below.

2.1 Constructing NOLH
A NOLH is built from a column vector e, two matrices

M and S and a set of matrices A. The vector e is a per-
mutation of the values [1 2 · · · q], where q is the number of
positive levels in the NOLH. The dimensionality of a NOLH
is obtained by changing an order parameter noted m. For a
given order value, some variables can be computed:

k = m+

 
m− 1

2

!
, (1)

n = 2m + 1, (2)

q =
n− 1

2
= 2m−1. (3)

Using an NOLH of order m, k variables can be examined,
which corresponds to the maximum dimensionality of the
search space that can be sampled. The number of runs (lev-
els) n corresponds to the number of samples to be tested for
an NOLH of order m. Tab. 1 shows different m associated
with the number of variables k it can explore.

First, the setA is composed of m−1 permutation matrices
of size q × q, where each matrix is denoted as Ai, with
i = 1, 2, . . . ,m − 1. Matrix I is a 2 × 2 identity matrixˆ

1 0
0 1

˜
while matrix R is a 2× 2 matrix

ˆ
0 1
1 0

˜
.

Ai = I⊗ . . .⊗ I| {z }
m−1−i

⊗R⊗ . . .⊗R| {z }
i

, (4)

where ⊗ is a Kronecker product of matrices.
Then, M, a q× k matrix, is generated using vector e and

matrices of A. First column m1 corresponds to the vector
e, while, for the next m − 1 columns, mi is obtained by
multiplying Ai with e. Remaining columns mm+1, . . . ,mk

correspond to every pairwise multiplication of the matrices
Aj and Al with the vector e, with j = 1, . . . ,m − 2 and
l = j + 1, . . . ,m− 1.

Afterwards, S, also a q × k matrix, is constructed as fol-
lows. The values in the first column s1 are set to 1. The
subsequent m − 1 columns, s2, . . . , sm, are alternating be-
tween −1 and 1, to reflect the estimation of the main effect
in a two-level full factorial design. The remaining columns,
sm+1, . . . , sk, are the pairwise element-wise multiplication of
the s2 to sm columns.

Next, matrix T is built with the Hadamard product be-
tween matrices M and S. Finally, the sampling matrix is
an augmentation of matrix T with its mirror negative image
and a centre point. A sampling matrix for the hypotheti-

cal matrix T =
ˆ
a b
c d

˜
would be

ˆ
a c 0 −a −c
b d 0 −b −d

˜T
. Interested

readers are referred to [6] for more details on NOLH.



2.2 Florian’s Method
Florian’s method is a routine that is applied to the final

sampling matrix in order to decrease its maximum pairwise
correlation. Briefly, it exchanges the position of two levels
within the same column of the sampling matrix until there
cannot be anymore improvement of the correlation in the
matrix. Cioppa and Lucas use this procedure only on the
sampling matrices that pass a certain screening test. In the
current paper, when Florian’s method is used, it is applied
on every sampling matrix without discrimination. Interested
readers are referred to [6, 10] for more details on Florian’s
method.

3. SCRAMBLED HALTON SEQUENCES
Producing a Scrambled Halton Sequence (SHS) provides

an unbounded number of samples for a given dimensionality.
Such a low-discrepancy sequence can be very interesting to
functionally replace a sequence obtained from usual pseudo-
random number generators.

3.1 Van Der Corput Sequences
Consider p to be a prime number. The following sequence

generates the nth element xn,p ∈ [0, 1] of the Van Der Corput
sequence in basis p:

• Write n in basis p: n = dkdk−1 · · · d1, that is n =Pk
i=1 dip

i−1 with di ∈ {0, . . . , p− 1};

• xn,p = 0.d1d2 · · · dk in basis p, i.e. xn,p =
Pk
i=1 dip

−i.

A classical improvement to such sequence, called scrambling,
defines xn,p as:

xπn,p = 0.π(d1)π(d2) · · ·π(dk), (5)

where π is a permutation of [0 1 · · · p−1] such that π(0) = 0
in order to ensure that ∀n > 0, xn,p 6= 0. Reverse scram-
bling consists in using π(0) = 0 and for j > 1, π(j) = p− j.

3.2 Halton Sequences
The Halton sequence generalizes the Van Der Corput se-

quence to dimension d. Consider pi the ith prime number.
Then, xn, the nth element of a Halton sequence in dimension
d, is:

xn = (xn,p1 , xn,p2 , . . . , xn,pd) ∈ [0, 1]d. (6)

The Halton sequence ensures the O(log(n)d/n)-property for
low-discrepancy, as defined later (Eq. 8). However, the se-
quences can be disappointing, especially for small numbers
of points or large dimensionality. In particular, the expo-
nential behaviour in d is problematic – such an exponent
does not exist for random independent uniform sequences.

Many solutions have been proposed for dealing with large
dimensionality when the distribution to be approximated
has strong dependencies between coordinates (see e.g. [12])
or when a reasonable grouping is possible [17]. But for [0, 1]d

with d large the only results are (see [18, 21] and references
therein):

• A deterministic sequence for which it has been proven
that the exponential dependency in d is removed, but
the discrepancy decreases as O(1/(#P )α) with α < 1

2
,

i.e. the sequence is worse than a random independent
sequence.

• An existence proof, without any construction, of a se-
quence that achieves O(1/(#P )α) with α > 1

2
, i.e.

there exists something that (i) is better than random,
and (ii) is better than standard low-discrepancy in
large dimension, but we are not able to build it.

3.3 Scrambling Halton Sequences
Scrambling is a technique for improving the discrepancy,

in particular for a moderate number of examples. With
scrambling, xn is replaced by:

xπn =
“
xπ(1)
n,p1 , x

π(2)
n,p2 , . . . , x

π(d)
n,pd

”
∈ [0, 1]d. (7)

As many works on the topic, the method proposed here fo-
cuses on scrambling values given in Eq. 7.

Various scrambling fitting the framework of Eq. 7 have
been proposed [20], each of them providing a new sequence of
permutations (Πn)n∈N (Πn is a permutation of [0 1 · · · (pn−
1)] with 0 as fixed point). It was then shown that in spite
of its simplicity, the simple reverse scrambling (i.e. Πn =
[0 (pn− 1) (pn− 2) · · · 1]) is almost always as efficient, and
often better than the other techniques.

4. SAMPLING MATRIX EVALUATION
Cioppa and Lucas [6] present two different properties of

a sampling matrix: space-filling and orthogonality. The for-
mer is measured by the modified second level (ML2) discrep-
ancy and the Euclidean maximin (Mm) distance while the
latter is measured by the condition number and the max-
imum pair-wise correlation. The key for a good design is
to minimize the condition number, maximum pairwise cor-
relation and ML2 discrepancy while maximizing the Mm
distance.

4.1 Discrepancy
The various measures quantifying the distance between

a point set and uniformity are expressed by a discrepancy
measure. There are various forms of discrepancy; the most
well known is the star-discrepancy [16], defined as follows
for a matrix x:

D∗(x) = sup
u∈[0,1]k

˛̨̨
#
n
i ∈ {1, . . . , n},

∀j∈{1,...,k} xi,j < uj
o
−

kY
j=1

uj

˛̨̨
, (8)

where #E is the cardinal of the set E. It is known [5]
that the discrepancy of uniform random independent points
verifies:

lim sup
n→∞

√
2nD∗(x)p

log(log(n))
= 1, (9)

whereas low-discrepancy sequences verify:

lim sup
n→∞

nD∗(x)

log(n)k
= 1, (10)

(the exponent for the logarithm is k−1 in some cases, namely
when the number of points is known in advance, with e.g.
Hammersley points). The difference between Eq. 9 and
Eq. 10 is the main reason for choosing quasi-random points
instead of random or pseudo-random points. However, the
star-discrepancy has the following drawbacks:



• The supremum involved in Eq. 8 neglects the unifor-
mity in several parts of the domain (only the points
close to the frontiers of the u realizing the supremum
matter);

• As Fang et al. [8] state “one disadvantage of [the star-
discrepancy] measure is that it is expensive to com-
pute”.

Therefore, Hickernell [12] proposed various other discrepan-
cies, in particular the ML2 discrepancy. The ML2 discrep-
ancy is close to the star-discrepancy [9], but replaces the
supremum norm by a L2 norm and averages the result over
projections of the design on subsets of coordinates. Impor-
tantly, it can be rewritten as follows on a sampling matrix
with entries in the range [0, 1]:

ML2 =

„
4

3

«k
− 21−k

n

nX
d=1

kY
i=1

`
3− x2

d,i

´
+

1

n2

nX
d=1

nX
j=1

kY
i=1

ˆ
2−max (xd,i, xj,i)

˜
, (11)

where xi,j is an entry in the sampling matrix. A larger dis-
crepancy means that there are more points in a certain area
of the design and leads to a poorer space-filling property.

4.2 Euclidean Maximin Distance
The Euclidean maximin distance (Mm) is defined to be

the smallest distance between a pair of rows in the sampling
matrix. Let d = [d1,2 d1,3 · · · dn−1,n] where di,j denotes
the Euclidean distance between rows i and j, i < j:

di,j =

q
(i1 − j1)2 + . . .+ (ik − jk)2. (12)

The Mm distance is the smallest di,j ∈ d, computed on a
sampling matrix with entries in the range [−1, 1]. A large
minimal distance indicates that the distance between the
closest point is also large and leads to a better space-filling
property.

4.3 Condition Number
Usually the condition number is used in linear algebra to

assess whether or not a problem is numerically well-condi-
tioned. Cioppa and Lucas [6] used it to compute the degree
of orthogonality of a sampling matrix. A matrix with a
condition number equal to 1 is orthogonal while a condi-
tion number greater than one indicates some degree of non-
orthogonality. The condition number is calculated by the
singular value decomposition of XTX:

cond2(XTX) =
ψ1

ψn
, (13)

where X is the sampling matrix, ψ1 is the largest singular
value and ψn is the smallest singular value of XTX. As
stated by Cioppa and Lucas, a nearly orthogonal sampling
matrix would have a condition number no greater than 1.13.

4.4 Maximum Pairwise Correlation
The maximum pairwise correlation is the absolute largest

correlation between a pair of columns of the sampling ma-
trix. The correlation between two vectors, v = [v1 v2 · · · vn]

and w = [w1 w2 · · · wn], is computed as follows:

MPwC = max
∀v,∀w,v<w

˛̨̨̨
˛

Pn
i=1 [(vi − v) (wi − w)]Pn

i=1 (vi − v)2
Pn
i=1 (wi − w)2

˛̨̨̨
˛.
(14)

According to Cioppa and Lucas [6], the maximum pairwise
correlation of a NOLH would be no greater than 0.03.

5. EVOLVING RANDOM PERMUTATIONS
Evolutionary algorithms have already been use to evolve

optimized Latin hypercubes [2, 13]. Such Latin hypercubes
are closer to McKay’s [15] Latin hypercubes than Ye’s [22]
orthogonal Latin hypercubes as they can contain as many
samples as needed. That difference leads to a different en-
coding. Bates et al. [2] and Liefvendahl and Stocki [13]
encode directly, in their own manner, the sampling matrix
in the genotype. In the present work, we use the construc-
tion algorithms presented in Sec. 2.1 and 3 using vector e
as the sampling matrix’s genotype for NOLH, and permuta-
tion of indices associated to prime numbers in SHS. In our
opinion, evolving permutations of indices with an evolution-
nary algorithm should allow to move from an initial popula-
tion of good random low-discrepancy sequences, equivalent
to solutions obtained with random permutations, to excel-
lent configurations optimizing the permutations according
to discrepancy and related measures presented in Sec. 4.

5.1 Representation
The evolved population is made of individuals represented

as fixed-length integer-valued vectors. These vectors are per-
mutation of indices, that is [a1 a2 · · · an], where n is the
size of the genotype, and ai ∈ {1, 2, . . . , n} an index, with
ai 6= aj , ∀i 6= j. That genotype, which is manipulated by
the variation operators described in Sec. 5.2. The evolved
vectors of permutations are used differently for the configu-
ration of NOLH and SHS.

For NOLH, the permutation of indices is directly used as
vector e, introduced in Sec. 2.1. This is the only parame-
ter in Cioppa and Lucas’ method that can be modified for
generating a NOLH of a given fixed order m. The length
q of vector e depends on the order m of the NOLH, with
q = 2m−1. Given that, the number of possible permuta-
tions for a vector e of length q increases as O(2m!), it is
computationally intractable to try all possible permutations
with m > 4. Cioppa and Lucas propose to perform random
permutations to explore some of the possible configurations
of NOLH. Random permutations are replaced here by an
evolutionary algorithm searching for more efficient permu-
tations.

Sec. 3 explains how SHS are constructed from permu-
tations of indices Πi = [0 πi(1) · · · πi(pi − 1)], where pi
is the ith prime number. In a given permutation of in-
dices Πi, πi(0) = 0 is used as fixed point, while compo-
nents πi(j), j > 0 are the other permuted indices, with
πi(j) 6= πi(k), ∀k 6= j. Therefore, for constructing a SHS
generating samples of dimensionality d, it is necessary to
provide d− 1 different permutations of sequences Πi – per-
mutation sequence Π1 for prime number p1 = 2 is necessar-
ily the identity and need not be evolved. According to this,
the evolved genotype is a permutation of indices vector that
is transcripted into a phenotype representing the different
Πi, i = 2, . . . , d. That transcription is done by assigning
the pi − 1 indices in the genotypes to a sequence Πi, using



10 2 5 7 6 3 11 1 4 9 8 12

Genotype: Phenotype:

Π2

Π3

Π4

Π2 Π3 Π4

10 2

5 7 6 3

11 1 4 9 8 12

0 2 1

0 2 4 3 1

0 5 1 2 4 3 6

Figure 2: Example of a genotype of indices permu-
tation transcripted into a phenotype of several small
indices permutation sequences Πi, which are used to
parameterize scrambled Halton sequences.

• Input: Parent individuals, x1 = [x1,1 · · · x1,n] and
x2 = [x2,1 · · · x2,n].
• Output: Offspring individuals, y1 = [y1,1 · · · y1,n]

and y2 = [y2,1 · · · y2,n].

1. Initialize offspring, y1 = y2 = ∅, and counters, j1 =
j2 = 1.

2. While j1 6= n and j2 6= n:

(a) Select index value z from parents:

• If j1 = n → z = x2,j2 and j2 = j2 + 1;
• Else if j2 = n→ z = x1,j1 and j1 = j1+1;
• Else select randomly a parent k ∈ {1, 2},

and set z = xk,jk and jk = jk + 1.

(b) Add index value z to an offspring:

• If z ∈ y1 → y2 = [y2 z];
• Else if z ∈ y2 → y1 = [y1 z];
• Else select randomly offspring k ∈ {1, 2},

and set yk = [yk z].

Figure 3: Crossover operator used to generate two
offspring individuals by mixing two parent individ-
uals.

the relative value of indices in the genotype to infer the new
indices of the sequence. Fig. 2 illustrates this process, with
a concrete example for d = 4. For evolving a configuration
of SHS of dimension d, genotypes of size

Pd
i=2(pi − 1) are

necessary. It should be noted that many different genotypes
of the same size can lead to identical phenotypes. This re-
dundant representation may have interesting effects on the
evolutionary search. This is a question of interest that has
not been investigated in the current paper, for space and
scope reasons.

5.2 Variation Operators
Crossover and mutation have been used as variation op-

erators to generate offspring from parents. Both operators
are designed to preserve the fact that genotypes represent
permutation of indices, such that every index value should
appear only once in each individual. The crossover operator
proceeds by randomly mixing index values of two parents to
generate two offspring, as presented in Fig. 3. The mutation
operator consists in swapping values in a genotype according
to a probability value, as presented in Fig. 4.

• Input: Original individual, x = [x1 · · · xn] and
swapping probability, ρ.
• Output: Mutated individual, y = [y1 · · · yn].

1. Initialize mutated individual as original individual,
y = x.

2. For i = 1, . . . , n:

(a) If z < ρ, with z = U(0, 1) a random value
draw uniformly in [0, 1], then:

• Select randomly an index k ∈ {1, . . . , (i−
1), (i+ 1), . . . , n} to swap;

• Swap values yi and yk of mutated individ-
ual.

Figure 4: Mutation operator for swapping index val-
ues of individual.

5.3 Fitness Measures
The fitness fNOLH of an individual x used for NOLH is

composed of four measures:

fNOLH(x) = {ML2(x),Mm(x), fCond(x), fCor (x)},(15)

fCond(x) = min(1, 1.13/ cond2(x)), (16)

fCor (x) = min(1, 0.03/MPwC (x)), (17)

where ML2(x) is the ML2 discrepancy (Sec. 4.1) of the sam-
ples generated by constructing a NOLH with individual x,
Mm(x) is the Euclidean Mm distance (Sec. 4.2) of the cor-
responding NOLH, cond2(x) is the condition number (Sec.
4.3) associated with that NOLH, and MPwC (x) is the corre-
sponding maximum pairwise correlation (Sec. 4.4). The last
two values are bounded by the prescribed values of near or-
thogonality (i.e. cond2(x) ≤ 1.13 and MPwC (x) ≤ 0.03). A
relative selection algorithm is used (i.e. k-participants tour-
nament selection), such that comparison of two individuals
is made by a normalized sum of the four fitness measures:

g(x1,x2) =
ML2(x2)−ML2(x1)

ML2(x1) + ML2(x2)
+

Mm(x1)−Mm(x2)

Mm(x1) + Mm(x2)

+
fCond(x1)− fCond(x2)

fCond(x1) + fCond(x2)
+

fCor (x1)− fCor (x2)

fCor (x1) + fCor (x2)
, (18)

with x1 being selected when g(x1,x2) ≥ 0, otherwise x2

is selected. This complex fitness comparison approach is
adopted in order to allow the comparisons of our results
with those obtained by Cioppa and Lucas [6].

For SHS, the fitness consists of a direct minimization of
the ML2 discrepancy (Sec. 4.1). This is the quality criterion
used by Vandewoestyne and Cools [20] to assess approaches
to generate low-discrepancy sequences.

6. EXPERIMENTS
This section presents the experiments conducted on the

optimization of the NOLH with an Evolutionary Algorithm
(NOLH-EA) in Sec. 6.1, as well as the optimization of SHS
with an Evolutionary Algorithm (SHS-EA) in Sec. 6.2. In
both cases, most of the computational time was taken by ac-
cessing candidate solutions, with negligible overhead added
by other operations of the evolutionary algorithm. There-



Parameter NOLH-EA SHS-EA
Number of generations 150 1500
Population size 10 000 500
Selection type Tournaments Tournaments
Participants to tourna-
ments

5 10

Crossover probability 0.5 0.5
Mutation probability 0.3 0.3
Mutation swapping prob-
ability (ρ)

0.2 0.02

Table 2: Parameters of the evolutionary algorithm
used for the evolution of permutations for NOLH-
EA(-FLO) and for SHS-EA.

Rank ML2 Mm fCond fCor

1 0.688531 1.83286 1 1
2 0.683901 1.81573 1 1
3 0.691428 1.83286 1 1
4 0.692991 1.83286 1 1
5 0.683289 1.80701 1 1
6 0.693695 1.82324 1 1
7 0.706094 1.83286 1 1
8 0.701136 1.81681 1 1
9 0.699427 1.80710 1 1
10 0.708548 1.82645 1 1

Mean 0.6948 1.8228 – –
Std. dev. 0.0087 0.0105 – –

Table 3: Ten best designs found over 50 experiments
using an evolutionary algorithm, without using Flo-
rian’s method (NOLH-EA).

fore, the evolutionary techniques can be compared to the
random permutation ones according to the number of solu-
tions accessed.

6.1 Results with NOLH
Two sets of 50 experiments have been performed with

the evolution of NOLH of order m = 5, dimensionality
d = k = 11 and n = 33 samples. The first set constructs
a NOLH as explained in Sec. 2.1, the second set adds Flo-
rian’s method (Sec. 2.2) to this construction procedure. The
results for the first set of experiments are compared to the re-
sults obtained with 12.5 million random permutations. The
results for the second set of experiments are compared to
Cioppa and Lucas’ best design using Florian’s method. Evo-
lutions have been conducted using parameters presented in
Tab. 2. All experiments have been implemented using the
Open BEAGLE C++ framework for evolutionary computa-
tion [11].

The results of the first set of experiments, constructing
the NOLH with an evolutionay algorithm and without us-
ing Florian’s method (NOLH-EA) are shown in Tab. 3. Tab.
4 presents the results of the random search and Cioppa and
Lucas’ best design. In the tables, fCond and fCor refer to the
condition number and the maximum pairwise correlation re-
spectively, as described in Sec. 5.3. On average, NOLH-EA
designs improve discrepancy by 5.7% and maximin distance
by 3.1% compared to the best NOLH-RND design. In ad-
dition, the computational effort needed to reach these solu-
tions is lower, with an average of 1 million solutions tested

Rank ML2 Mm fCond fCor

1* 0.731822 1.75780 1 1
1 0.736484 1.76777 1 1
2 0.722773 1.72187 1 1
3 0.687863 1.63339 1 1
4 0.732031 1.73543 1 1
5 0.737450 1.71733 1 1
6 0.718618 1.78645 1 0.935
7 0.724820 1.68402 1 1
8 0.710764 1.65123 1 1
9 0.739440 1.70706 1 1
10 0.744426 1.70706 1 1

NA** 0.733508 1.78754 0.918 0.408

Table 4: Ten best designs found after 12.5 mil-
lion random permutations (NOLH-RND) : * de-
notes Cioppa and Lucas’ best design using Florian’s
method, ** denotes Cioppa and Lucas’ best design
without using Florian’s method.

Rank ML2 Mm fCond fCor

1 0.660880 1.93548 1 1
2 0.650608 1.89572 1 1
3 0.670614 1.94856 1 1
4 0.656370 1.89263 1 1
5 0.656127 1.89159 1 1
6 0.650319 1.87916 1 0.99733
7 0.662342 1.90702 1 1
8 0.660529 1.90189 0.99912 1
9 0.651672 1.87292 1 1
10 0.666234 1.90907 0.99975 1

Mean 0.6586 1.9034 – –
Std. dev. 0.0068 0.0234 – –

Table 5: Ten best designs found over 50 different
experiments with an evolutionary algorithm using
Florian’s method (NOLH-EA-FLO).

for each run of the evolutionary algorithm, compared to the
12.5 million solutions tested by the random search.

Above experiments have been performed without using
Florian’s method. Including this method in the evolution-
ary algorithm provides better results as shown in Tab. 5,
which presents the ten best designs of the second set of ex-
periments. On average, these designs have a discrepancy
and maximin distance that are respectively 10.0% and 8.3%
better than Cioppa and Lucas’ best design using Florian’s
method (Fig. 5). The best sampling matrix built with a
evolutionary algorithm and Florian’s method (NOLH-EA-
FLO) can be seen in Fig. 6. It can be observed that
points obtained with NOLH-EA-FLO are distributed more
uniformly than with Cioppa and Lucas’ method for which
poor space-filling visual patterns, like the “X” shaped plot
between variables A-I, C-D, F-G, and J-K, is visible.

6.2 Results with SHS
For SHS of dimensionality d = 11 and n = 200 samples,

20 independent experiments are made using an evolutionary
algorithm (SHS-EA) and the configuration shown in Tab. 2.
The ten best results obtained from these runs are compared
to the results of 12.5 million randomly generated scrambled
Halton sequences (SHS-RND). Tab. 5(a) shows the ten best
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Figure 5: Pairwise dimension representation for the
best design found by Cioppa and Lucas using Flo-
rian’s method.

randomly generated SHS, as well as the SHS generated by
reverse scrambling [20]. Tab. 5(b) presents a list of the ten
best results obtained from the 20 independent experiments
made with an evolutionary algorithm.

It is observed that SHS-EA outperforms SHS-RND by
12.9%, on average. The best sequences obtained with SHS-
RND and SHS-EA are presented in Fig. 7 and 8, respec-
tively. The overall uniformity of SHS-EA is slightly supe-
rior to SHS-RND, the plot of the latter showing non uni-
form patterns between variables B-C, and F-G, while such
patterns are almost absent of SHS-EA. Once again, the com-
putational effort to find these better solutions is lower, with
an average of 500 000 sequences explored by the evolution-
ary algorithm compared to the 12.5 million tested for the
random case.

7. CONCLUSION
This paper has investigated the possibility of generat-

ing low-discrepancy sequences using an evolutionary algo-
rithm. In both studied cases, NOLH and SHS, the proposed
evolutionary algorithm significantly outperforms the origi-
nal random technique. Also in both cases, lower compu-
tational resources are used, showing that the space of all
possible sampling matrices can be explored efficiently. Gen-
erating sequences of samples with very low discrepancy can
be highly beneficial to many scientific fields such as finance
[19], volume and surface calculation [7], and even evolution-
ary algorithms [1]. A practical motivation of our work is
to exploit low-discrepancy sequences in the context of com-
puter assistance to increase human comprehension of mil-
itary complex situations [14]. In fact, any domain relying
on well-distributed sampling of a given space can eventually
benefit from the techniques proposed in the current paper
to increase their efficiency.

The current work can be extended in many ways. Firstly,
new crossover and mutation operators could be developed
specifically for an efficient evolution of low-discrepancy se-
quences. Secondly, other discrepancy measures can be tested.
For example, non-extreme or centred versions of the discrep-
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Figure 6: Pairwise dimension representation for the
best design found with an evolutionary algorithm
using Florian’s method (NOLH-EA-FLO).

ancy can be considered in order to avoid poor uniformity
and ensure symmetry (see [12] and [16, page 14]). In many
cases, uniformity measures are somewhat disappointing [4]
and could be replaced by performance measures on a set
of benchmarks. Thirdly, as there are several measures of
uniformity, multiobjective optimization could be used. And
finally, instead of optimizing the discrepancy for a fixed num-
ber of points in a fixed dimension, some“anytime”properties
could be considered: generating permutations which ensure,
as far as possible, good properties independently of the num-
ber of points and dimensions used.
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