
SCHNAPS: A Generic Population-based Simulator for Public Health Purposes
Audrey Durand Christian Gagné

Dép. de génie électrique et de génie informatique Dép. de génie électrique et de génie informatique
Université Laval, Québec (Québec), Canada G1V 0A6 Université Laval, Québec (Québec), Canada G1V 0A6

audrey.durand.2@ulaval.ca christian.gagne@gel.ulaval.ca

Marc-André Gardner François Rousseau
Dép. de génie électrique et de génie informatique Dép. bio. moléculaire, biochimie médicale et pathologie

Université Laval, Québec (Québec), Canada G1V 0A6 Université Laval, Québec (Québec), Canada G1V 0A6
marc-andre.gardner.1@ulaval.ca francois.rousseau@mac.com

Yves Giguère Daniel Reinharz
Dép. bio. moléculaire, biochimie médicale et pathologie Dép. de médecine sociale et préventive
Université Laval, Québec (Québec), Canada G1V 0A6 Université Laval, Québec (Québec), Canada G1V 0A6

yves.giguere@crsfa.ulaval.ca daniel.reinharz@fmed.ulaval.ca

Abstract
In this paper, we present SCHNAPS, a generic simulator de-
signed for health care modelling and simulations, parametriz-
able by configuration files and usable by non-programmers
such as public health specialists. SCHNAPS is a population-
based simulator, using hybrid-state agents to simulate time-
driven models. Its software architecture integrates some fun-
damental object oriented concepts to facilitate further devel-
opments and extensions. The proposed approach aims at nar-
rowing the gap between the simulation model and the con-
ceptual modelling made by public health specialists. Current
work on osteoporosis, under evaluation by health care spe-
cialists, is also presented as a real use case.

1. INTRODUCTION
Given that health care systems are characterized by great

variability, the complete set of possibilities for a certain prob-
lem in that domain is often too large and complex to be dealt
with easily by decision makers. That is why simulation has
been used since the 1960s to assist them in assessing and
comparing the various options [2]. However, as Eldabi, Paul
and Young [6] explained, even if the use of simulation in
health care decision-making has greatly increased after the
year 2000, the impact of simulations on policy-making or
managerial decision-making is weak. They suggested that al-
though there are many interfaces and packages that imple-
ment basic methods, there is still a lack of robust and easy-to-
use tools that could easily be used by clinicians and hospital
managers.

The aim of SCHNAPS (SynCHroNous Agent- and
Population-based Simulator) is to provide users with a ro-
bust, versatile and convenient simulation framework that will
be used, among others, for public health purposes. In order
to achieve this, our simulator has been developed jointly with

health care specialists and decision makers, and is validated
using real decision-making problems. However, the simulator
is not targeting only the health care domain: it is designed to
be extensible, supporting most types of simulations applied
to populations.

Sec. 2. presents the public health application con-
text in which the simulator has been developed. Then,
Sec. 3. explains the concepts underlying its characteriza-
tion as population-based, hybrid-state and time-driven. It also
presents the internal modelling of a simulation and its execu-
tion process. Sec. 4. describes the object oriented aspects of
its internal architecture. Then, the configuration of a simula-
tion is detailed in Sec. 5., including the presentation of the
graphical user interface. Finally, a case study is presented in
Sec. 6. as an example to support previous concepts.

2. GENERIC SIMULATOR FOR PUBLIC
HEALTH

The motivation of our project is to provide a general simu-
lation framework for supporting public health decision mak-
ers in the design of screening and prevention strategies. In-
deed, there is an interest to provide decision makers with
quantitative results comparing expected outcome of different
public health policies. Otherwise, decisions might be based
on low quality results, opinions, political pressures, and/or
pharmaceutical lobbying. Moreover, current models of health
service delivery are too complex to be evaluated through ana-
lytical methods. Therefore, simulation tools allowing execu-
tion of different models of screening and prevention strategies
on populations evolving in a specific environment might be of
great interest.

Public health is concerned with a great variety of activi-
ties, as screening for preventable diseases or conducting vac-
cination campaigns. Therefore, a flexible simulation engine

mailto:audrey.durand.2@ulaval.ca
mailto:christian.gagne@gel.ulaval.ca
mailto:marc-andre.gardner.1@ulaval.ca
mailto:francois.rousseau@mac.com
mailto:yves.giguere@crsfa.ulaval.ca
mailto:daniel.reinharz@fmed.ulaval.ca


is required. Given that we cannot anticipate all possible mod-
els/uses that would be needed by public health decision mak-
ers, we opted for developing a generic simulator software
framework, allowing models of any kind – even models not
related to public health – with the common denominator that
simulations are conducted on populations.

Robinson [15] classified simulation software into three cat-
egories:

Spreadsheets are general software such as Excel, that pro-
vide some basic computation capabilities for manipulat-
ing numbers in 2D grid of cells. Up to some point they
can be used by non-programmers, but are of limited use
and not convenient for good computing practices such as
code reuse and modularization.

Programming languages allow implementation of any sim-
ulation models, but require good programming capabil-
ities. Obviously, they support common practices in soft-
ware engineering for code reuse, abstractions and mod-
ularization.

Specialist simulation software allow simple configuration
of simulations, often through a visual interface, but are
specific to an application domain, and usually difficult
to extend or adapt to other fields. With usual commer-
cial software, it is not possible for the user to extend the
tool beyond the application interface, as the software in-
ternals are controlled by its owner.

The concept of the simulation software we are proposing is
a hybrid between those types of software: a generic engine
where the simulation models are given through a configura-
tion file using a general format. It is similar to a program-
ming language, as the models are given in an explicit form
that works like a computer program. Moreover, it is possi-
ble to extend the instruction set with new functions and to
create modules of some domain-related instructions. Models
are built from such domain-specific building blocks, which
is somehow comparable to spreadsheets, where the available
instructions are restricted to what has been loaded, such that
the user will not be overwhelmed by the possibilities. Finally,
the configuration file format is designed to be easily generated
and editable through a general graphical user interface, bring-
ing non-programmers to a higher-level view of their simu-
lation models. This is quite close to a specialist simulation
software, while having an open architecture that provides as
much possibilities as a programming language.

In previous work published by our team [8, 10], simula-
tions were based on programming languages only, with cus-
tom applications made for each case studied. The models
were provided by public health specialists, in the form of de-
cision trees that were translated into computer programs by
computer specialists (in our case, undergraduate and gradu-
ate students). It was a very long process for the public health

specialists – which are not trained in computer programming
– to validate these models. As a consequence, such valida-
tion was mostly done empirically, on small set of results, not
allowing to detect some errors that may happen in the conver-
sion of the high-level models to code. The concept proposed
addresses this by providing a high-level representation of the
simulated models, narrowing the gap between the conceptual
and the computer model. We therefore expect that any public
health specialists will be able to thoroughly validate the sim-
ulation models, and even modify or enter models with little
or no help from programmers.

3. POPULATION-BASED HYBRID TIME-
DRIVEN SIMULATOR

Systems are defined by Cassandras and Lafortune [3] as an
interaction of components that must execute a specific func-
tion. The dependency of their output on the input history dif-
ferentiates a static from a dynamic system. They can also be
categorized as time-varying or time-invariant depending on
whether the output changes on clock ticks when input stays
the same. Systems are also defined according to their state,
which consists in measurable variables that describe them at
a particular moment.

Population-based simulator When each entity in a sim-
ulation is explicitly represented and has its own state,
made of several descriptive variables, the simulator is said
to be agent-based. SCHNAPS uses a set of homogeneous
agents/individuals making a simulated population, hence the
qualification of our model as population-based simulations.
The population-based approach is already known in health
care evaluation modelling, defined by Cooper, Brailsford and
Davies [4] as the use of an initial population of interest sub-
jected to incident cases of study as time progresses. They
present it in opposition to the cohort approach, in which a
group of individuals with a particular health condition are fol-
lowed over their lifetime, without having any new individu-
als entering the simulation. The population-based approach
is said to be more adapted to health care evaluation [12] al-
though it is more complex to model [5].

Because the population evolves in conjunction with its en-
vironment, which is modelled as an agent, the simulation is
said to be multi-agent. A multi-agent population could also
be simulated by defining the state of individuals in some way
that it could contain all variables that compose all kinds of
agents, but use only the ones related to the actual concerned
agent type. Nevertheless, the simulator was not planned for
further extensions toward pure multi-agent population simu-
lations.

Hybrid-state representation The kind of variables con-
tained in the state of the simulated systems also contributes



to classify the simulator. Indeed, a state is said to be dis-
crete if the domain of all variables’ values is finite, and it is
said to be continuous if their domain is defined by an infinite
set. SCHNAPS uses a hybrid-state representation, which can
contain a mix of discrete and continuous variables, providing
significant flexibility to the simulator in the modelling of in-
dividuals. This was required in order to support models of hu-
man individuals used in public health simulations, which may
contain variables made of different computer types (string,
integer, double, etc.), possibly organized into data structures
(compositions, lists, etc.).

Time-driven simulations Finally, SCHNAPS is said to be
time-driven as the state changes only on clock ticks and as
the time is a natural independent variable which appears as
the argument of all input, state, and output functions [3]. This
is in opposition to event-driven simulations, where the state
changes according to asynchronous events, like computer in-
terrupts. Time-driven simulations fit well with the main ob-
jective of simulating processing of individuals along a time-
line. It is possible to model the strategies according to the
most common models in health care simulations: decision
trees, Markov models and discrete event simulation [4].

3.1. Simulation Modelling
The simulation framework intends to provide users with

tools required to build any model needed by health decision
makers. In order to achieve this, the simulator structure re-
lies on several important concepts common in simulation re-
search. Its basic components are illustrated in Fig. 1.

Environment

State

Variables

Population

State

Variables

Individual
State

Variables

Individual
State

Variables

Individual

...

Data structures

Simulate

Individuals FIFOs

Individual FIFOs ...

Processes
1...*

Process structures

Process =

Environment FIFOs

Clock

Management structures

Simulation
system

Randomizer

Parameters

Population
manager

Generator

Individual FIFOs Individual FIFOs

Figure 1. Overview of the simulation framework.

Time representation First, the model contains a clock used
to synchronize events. The simulated time, as described by
Balci [1], is initialized to zero, which corresponds to any real
time value when the simulation begins. It is increased as the
simulation advances and can be stopped. In our implementa-
tion, a clock tick corresponds to an increment of time t to time

t +∆t. It is then possible to set the size of ∆t according to the
precision needed. However, as Balci [1] explained, the accu-
racy and the execution speed of the simulation greatly depend
on the selection of an appropriate ∆t. If it is too large, some
events might occur at the same time while they should not
and if it is too small, it will slow down the execution without
any gain in the simulation accuracy.

State representation Agents are described by their state,
which is constituted of variables. Since the states are hybrid,
some of the variables might be discrete while others might be
continuous. Our simulator contains two types of agents: in-
dividual and environment. Each individual has its own state,
comprised of the same variables as the other individuals but
with different values, which is characteristic of population-
based simulations [4]. The environment has its own state
made of specific variables. An alternative view is to consider
the environment as the only simulation entity, with a state
composed of all states of every individual plus some extra
environment-specific variables.

Processes Processes are another important concept which
consists in any operation that modifies individual or envi-
ronment states. It is always represented by primitives, i.e.
Boolean, mathematical and logical operations or any other
building blocks included in a typical programming environ-
ment. Processes can call (for immediate execution) or push
(for delayed execution) each other while specifying a target:
the environment, all individuals (sequentially) or current in-
dividual (default).

A process can also be an observer, which means that it is
triggered immediately for execution when the observed value
is modified. An observer can watch the clock, so it is trig-
gered on each tick, or it can watch one or many individuals or
environment variables. The target of an observer must also be
specified: environment, all individuals (sequentially) or cur-
rent individual (default).

Some processes are defined as scenarios. A scenario is a
process that is called at the beginning of the simulation, giv-
ing the initial drive by calling other processes for execution,
which constitute all together the simulation.

Execution queues In order to manage the execution of all
processes, the simulation framework employs several execu-
tion FIFO (first-in, first-out) queues per time unit, which al-
lows a process to be triggered with a delay. There is one set of
FIFO queues per individual and one set for the environment.

3.2. Simulation Execution
A simulation execution always begins with all FIFOs

empty. Scenarios are the first processes executed. They can be
assigned a target, like observers or called processes, or they



can call or push other targeted processes. This happens on
time value zero. After the scenario processing, the clock starts
and on each clock tick, each of the clock observers are called
for immediate execution. Then, the environment is processed,
followed by each individual of the population.

When processing an individual (including the environ-
ment), each process in the FIFO for the current clock time
is treated until the queue is empty. When a process called for
execution targets an individual other than the one processing
(for example, targeting all individuals while processing the
environment), the current data is stored, the process is exe-
cuted on the new target, then the data is restored and the exe-
cution continues. Algorithm 1 presents the pseudo-code for a
step-by-step execution of a simulation.

Algorithm 1 Simulation step-by-step
execute scenario
for each clock tick do

execute all clock observers
while current environment FIFO not empty do

current process = pop current environment FIFO
execute current process

end while
for each individual in population do

while current individual FIFO not empty do
current process = pop current individual FIFO
execute current process

end while
end for

end for

3.3. Information Flow
Information is exchanged by the different parts of the sim-

ulator throughout its execution. Fig. 2 illustrates that general
information flow. On clock ticks, each observer is pushed into
its target FIFO, which can be the environment or all individ-
uals. This is characteristic of time-driven systems. Then, for
each individual, starting with the environment, all processes
contained in its current FIFO are executed sequentially until
none remains. As stated before, a process has access to the
current clock value or any environment variable. It can also
read and write values of the current individual processing,
causing its observers to be pushed into their target FIFO. Fi-
nally, a process can call another one for immediate execution
or push the process into a FIFO (the current one or with a
delay) of its target.

4. OBJECT-ORIENTED ARCHITECTURE
We wanted SCHNAPS to be reusable and extensible and

thus we designed it to take advantage of the object oriented
properties of C++. Its foundations were greatly inspired by

Environment

State

Variable

State

Variable

Individual

State

Variable

Individual

...

Population

All processes

Call/Push

Current FIFO

State

Variable

Current Individual

Watch

Read

Write

Read

Clock

Read

Figure 2. General information flow.

the architecture of Open BEAGLE [7], an open source frame-
work for Evolutionary Computation, also programmed in
C++.

First of all, the class hierarchy illustrated in Fig. 3 re-
lies mostly on the inheritance and polymorphism features of-
fered by the language. Everything in the framework inherits
from the common root class Object. Even the fundamen-
tal data types in C++ are redefined as an Atom. The sub-
group Number joins together numerical data types with sim-
ilar functions and operators. The Container corresponds to
the definition of vector from the Standard Template Library
(STL). It is redefined for each object as a Bag, which defines
a vector of pointed objects of that type.

Object

Atom

Bool Number String

Integer Double Long
Unsigned
integer

Unsigned
long

PrimitiveContainer

Figure 3. Basic types hierarchy in the simulator.

This class hierarchy brings a coherent set of types to the
framework, such as in Java programming language, which
should simplify further developments. That goal is also
achieved by introducing some memory management con-
cepts. These consist of the use of a reference counter and
smart pointers, with a handle type defined for every object.



Through the inheritance mechanism, a handle on an object
can reference any other classes inheriting from it, as shown
in Fig. 4. This allows emulation of real C++ pointers. More-
over, casting of handles can be managed and verified in the
same style as the C++ casting functions. Memory manage-
ment is ensured by the reference counter, whose function is
to keep track of all dynamically allocated objects and their
references. It guarantees that these objects will be destroyed
when the last handle referring to it is dereferenced. There-
fore, when an object is allocated on the heap (using new) and
assigned to a handle, the user need not be concerned with
delete since the reference counter is already in charge of
it. This is a form of garbage collecting, common in high-level
programming languages such as Java or Python. Thus, we can
take advantage of C++ execution speed while having access
to high-level languages structures.

Object
handle

Atom

Number

Float

Object

Atom
handle

Number
handle

Float
handle

Figure 4. Smart pointers inheritance example.

The object oriented structure also includes the concept of
an Allocator: a type defined for every classes that can cre-
ate, clone or copy an instance of that class. It is a key ele-
ment of the simulator factory mechanism, an entity intended
to create objects dynamically without specifying their con-
crete class. This is an implementation of the Factory [9, 11]
design pattern, which is a simplification of the Abstract Fac-
tory pattern [9, 11]. Concretely, it consists of a data structure
mapping class names to allocators. Therefore, it is possible
to access allocators that are able to create objects using only
the name of their class. This principle is at the basis of the
parametrization by reading configuration files, which is ex-
plained in the next section.

5. SIMULATOR CONFIGURATION
In order to properly present the mechanism of configura-

tion by files, some key elements of a simulation must be re-
viewed. As seen in Sec. 3.1., the simulation is represented
by processes modifying individual variables, thus simulating
the occurrence of events. A process can observe the clock or
any individual or environment variables, which means that
when the observed value changes, all its observers are noti-
fied and updated automatically, following the Observer de-
sign pattern [9]. The simulation execution is based upon that

functionality since a scenario is the first process executed at
time zero, followed by the triggering of pushed processes at
clock ticks. Domino effects happen when an observed vari-
able is modified, leading to the execution of its observers,
which may also modify variables and trigger their observers,
and so on.

5.1. Process modelling
The concept of configuration using parameter files relies

primarily on the organization of information in tree struc-
tures. As seen in Fig. 5(a), a tree is made of a root node and
all its descendants. A branch represents the relation between
a node and its child and a node without any child is called a
leaf. Information propagates in a tree from the bottom to the
top i.e. from leaves to the root. Any Boolean, mathematical or
logical operation can be represented as a tree and executed by
going through children sequentially from left to right, com-
puting the arguments of the operation. In such representa-
tion, nodes correspond to operators and leaves, to arguments.
Fig. 5(b) presents an example of tree modelling of the follow-
ing operation: Z ∗Y +6/(X +1).

Root
node

Leaf
node

Node

Node

Leaf
node

Leaf
node

Leaf
node

Branch

(a)

* /

Z Y

X 1

6 +

+

(b)

Figure 5. Modelling as trees: (a) general tree architecture;
(b) Z ∗Y +6/(X +1) as a tree.

The simulation framework includes objects of type
Primitive to implement Boolean, mathematical and log-
ical operations or any specific functions. Tab. 1 presents the
fundamental functions, grouped by type of operations. These
primitives are designed to be organized in trees, allowing a
graphical modelling of any combination of operations, up to
the representation of complex computer routines or programs.

5.2. Plugins
The set of available primitives can be extended to provide

users with primitives more specific to different domains using
the Plugin object. A plugin is an external dynamic load-
ing library (shared object on Unixes or DLL on Microsoft
Windows) containing classes that define new primitives. A
library is not included in the main program, it is developed



Table 1. Examples of some basic primitives available in the
simulator.

Operation type Primitive

Boolean OR
AND

Mathematical

Add
Subtract
Multiply
Divide
Power
Modulo
Absolute value
Is less (<)
Is equal (=)

Logical If then else

outside and the program calls for it when needed. There is
one main framework, the same for every user, but each user
can add their own libraries to it in order to use homemade
primitives. As an example, a screening library was developed
to provide health care decision makers with pre-built primi-
tives to compute screening tests, treatments and events. The
concept of plugins supports the modular and extensible char-
acteristics of the framework and tends toward the Black-Box
pattern typical of the evolution of a software framework, as
described by Roberts and Johnson [14]. Once a plugin is de-
veloped and tested, its components (primitives) can be reused
without worrying about how they work, only knowing what
they do: they become black-boxed.

5.3. XML Configuration Files
Because of its natural tree-based organization, the XML

(eXtensible Markup Language) [13] language is ideal for
modelling our processes, represented by primitive trees.
Therefore, it has been chosen as the language for the simu-
lator configuration files. Every objects in the framework im-
plement methods for reading and writing themselves to XML,
using the factory to instantiate components from their name.
To standardize the parameters file, a XSD (XML Schema
Definition) [16] is used to indicate the proper form of the con-
figuration file. Each plugin must also provide its own XSD to
specify how its primitives might be used. An advantage of
proceeding in this way is that mastery of a programming lan-
guage is not required to design a simulation.

5.4. Graphical User Interface
However, since the modelling of a very complex simula-

tion can produce heavy XML files that are difficult to under-
stand, a graphical user interface was developed to facilitate
the capture of the simulation parameters. It is a generic inter-
face that uses the XSD files of the simulator to configure it-

self. Thus it can be used for any possible set of primitives and
can be extended to support any plugin by reading their XSD.
Process modelling is done through visual programming, with
each configuration aspect developed in a tab of the interface.
Information is presented to users in a coherent manner, avoid-
ing the use of XML tags, providing a wizard to facilitate the
task by modularizing the configuration process, and support-
ing users with fully graphical tools (e.g. entering decision
trees by drag-and-drop).

6. CASE STUDY: OSTEOPOROSIS
This section presents a case study to show the capabilities

of the simulator for providing public health decision makers
with crucial information in a specific field. The simulation
process involves several phases represented in Fig. 6. First,
the real-world problem corresponds to the need for simula-
tion. The conceptual model is a representation of the real
world problem, made by domain specialists and usually rep-
resented as a tree. Then, this model is transformed so it can be
processed by the simulator becoming the computer model. Fi-
nally, the simulation is run and analyzed, usually by the same
people that built the conceptual model so they can validate
that the execution was representative of the initial model.

Real world
problem

Conceptual
model

Computer
model

Simulation
&

Analysis
(Simulate)

(Simulator configuration)

(Decision trees)

Figure 6. The simulation process: from a real world problem
to its simulation. [15]

6.1. Real-World Problem Presentation
The problem considered here is about the possible bene-

fits of deploying prevention strategies for osteoporosis. Os-
teoporosis is a common disease that affects mainly post-
menopausal women, reducing their bone mineral density
(BMD) thus increasing their risk of fracture. Women can pre-
vent its occurrence by adapting their lifestyle and through
some medication, but up to now, there has been a lack of in-
formation regarding which option is the most cost/effective,
hence should be considered for a general implementation into
the population. Decision makers want to simulate the evolu-
tion of a population of post-menopausal women and the oc-



currence of fractures according to different prevention strate-
gies in order to compare them together and with the case of
no prevention at all. To simplify the problem, only the most
frequent fractures where considered: hip, wrist and vertebral.

6.2. Conceptual Model
The conceptual model includes both the population tar-

geted by the simulation and the processes that compose the
scenarios.

Population The population is defined according to infor-
mation provided by the Institute of Statistics of Quebec,
Canada (ISQ) to resemble the real Quebec population in
2008: 2,018,819 women of 40 years old and up.

Scenarios For the current case, three scenarios are consid-
ered: without prevention or using two different approaches.
Fig. 7 shows the conceptual model for the no-prevention sce-
nario. The two others are very similar except that they include
a node of prevention before the node of fracture. These sce-
narios represent all events (including clinical interventions)
and effects that may happen to an individual, in a year, con-
cerning osteoporosis. They are applied to the lifespan of sim-
ulated individuals.

No fracture

Fracture

Population
Fracture

probability

Death

Life Follow-up

Intervention

No intervention

Surgery

Traditional
treatment

DXA

DIsease
prevention

Without
disease

prevention

Yes

No

Death

Life

DXA

Disease
prevention

Without
disease

prevention

No

Death

Life

DXA

DIsease
prevention

Without
disease

prevention

No

Death

Life

Yes

Yes

Figure 7. Conceptual model for fracture occurrence and
treatment without any prevention strategies.

6.3. Computer Model
Population The state of individuals composing the popula-
tion is made of variables that reflect important characteristics
of post-menopausal women. Tab. 2(a) presents a typical state
with several possible variables values.

Because the simulation must stop only when all individuals
are dead, there is a variable that keeps track of the number of

individuals still alive. It is included in the environment state,
which is shown in Tab. 2(b).

Table 2. Individuals and environment state modelling.

(a) Some variables composing the individual state.

Variable Type Possible Values
Age Integer {40,41,. . .}
Death Boolean True/False
Fracture probability Double [0,1]
Death rate Double [0,1]
Medical costs Double [0,∞)

(b) Variables composing the environment state.

Variable Type Possible values
Individuals alive Integer {0,1, . . . ,Pop. size}

Scenarios Scenarios are a selection of recurrent processes.
Here, they are defined separately to facilitate the comprehen-
sion of each tree. Fig. 8 shows the computer model for the
scenario without prevention and some of its referenced pro-
cesses detailing simulated operations.

Yes

No

Fracture

Surgery

Traditional
treatment

Adjust
death rate

DXA

Disease
prevention

(1)

Adjust
death rate

Push next step

Clock tick

Update age
Update fracture probability

Update death rate 

Fracture DeathPopulation

(1)

Push next step

No disease
prevention

Figure 8. Computer model for fracture occurrence and treat-
ment without any prevention strategies.

6.4. Simulation and Analysis
The simulation produces a text file containing one individ-

ual per line, with all its variables separated by a tabulation.
Statistics for analysis can be computed on this output using
most database tool. The results of osteoporosis simulations
are currently being analyzed and validated by health care spe-
cialists in order to help decision makers develop an efficient
prevention policy.



7. CONCLUSION
SCHNAPS intends to provide clinical researchers with

a generic and convenient simulator, targeting the domain
of health care services as first objective. By developing
SCHNAPS in close collaboration with health care specialists
and policy makers, we ensure that our simulator will be us-
able by these people. It has been designed to handle the com-
plexity of their problems while trying to keep as generic as
possible, since it is meant to be extended to other applica-
tions outside the domain of health care. It is currently devel-
oped under GNU General Public License and the source code
is available on Google Code1.

Its impact is being shown by its application to osteoporosis
prevention modelling, presented as a case study, which was
an example taken from current work.

Its particular architecture is designed to integrate, in a near
future, optimization modules that will propose better solu-
tions in addition of simulating current issues. This will be
achieved by mixing planning in Partially Observable Markov
Decision Process (POMDP) with data mining of results.

Acknowledgements
The authors acknowledge financial support from FQRSC

(Québec), CIHR Institute of Genetics (Canada), CIHR Insti-
tute of Health Services Research (Canada), NSERC (Canada)
and APOGEE-Net/CanGèneTest Research and Knowledge
Network on Genetic Health Services and Policy2. The authors
are grateful to Annette Schwerdtfeger and Matthew Walker
for proofreading this manuscript.

REFERENCES
[1] Balci, O., 1988, “The implementation of four concep-

tual frameworks for simulation modeling in high-level
languages.” In WSC ’88: Proceedings of the 20th con-
ference on Winter simulation, ACM, New York, NY,
USA, 287–295.

[2] Brailsford, S. C., 2007, “Tutorial: Advances and chal-
lenges in healthcare simulation modeling.” In WSC ’07:
Proceedings of the 39th conference on Winter simula-
tion, IEEE Press, 1436–1448.

[3] Cassandras, C. G. and Lafortune, S., 2006, Introduction
to Discrete Event Systems. Springer-Verlag New York,
Inc.

[4] Cooper, K.; Brailsford, S. C.; and Davies, R., 2007,
“Choice of modelling technique for evaluating health
care interventions.” Journal of the Operational Re-
search Society, 58(2), 168–176.

1http://code.google.com/p/lsdsimulation/
2http://www.cangenetest.org/

[5] Davies, R.; Brailsford, S.; Roderick, P.; Canning, C.;
and Crabbe, D., 2000, “Using Simulation Modelling for
Evaluating Screening Services for Diabetic Retinopa-
thy.” The Journal of the Operational Research Society,
51(4), 476 – 484.

[6] Eldabi, T.; Paul, R. J.; and Young, T., 2007, “Simulation
modelling in healthcare: reviewing legacies and inves-
tigating futures.” Journal of the Operational Research
Society, 58(2), 262–270.

[7] Gagné, C. and Parizeau, M., 2006, “Genericity in Evo-
lutionary Computation software tools: principles and
case-study.” International Journal on Artificial Intelli-
gence Tools, 15:2, 173–194.

[8] Gagné, G.; Reinharz, D.; Laflamme, N.; Adams, P. C.;
and Rousseau, F., 2007, “Hereditary hemochromatosis
screening: effect of mutation penetrance and prevalence
on cost-effectiveness of testing algorithms.” Clinical ge-
netics, 71(1), 46–58.

[9] Gamma, E.; Helm, R.; Johnson, R. E.; and Vlissides, J.,
1995, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[10] Gekas, J.; Gagné, G.; Bujold, E.; Douillard, D.; For-
est, J.-C.; Reinharz, D.; and Rousseau, F., 2009, “Com-
parison of different strategies in prenatal screening for
Down’s syndrome: cost effectiveness analysis of com-
puter simulation.” BMJ, 338(feb13 1), b138–b138.

[11] Larman, C., 2004, Applying UML and Patterns: An In-
troduction to Object-Oriented Analysis and Design and
Iterative Development. Prentice Hall PTR, 3rd ed.

[12] Mauskopf, J., 1998, “Prevalence-based economic eval-
uation.” Value in health : the journal of the Interna-
tional Society for Pharmacoeconomics and Outcomes
Research, 1(4), 251–259.

[13] Ray, E. T., 2003, Learning XML. O’Reilly Media, 2nd
ed.

[14] Roberts, D. and Johnson, R., 1996, “Evolving Frame-
works: A Pattern Language for Developing Object-
Oriented Frameworks.” In Addison-Wesley, ed., Pro-
ceedings of the Third Conference on Pattern Languages
and Programming.

[15] Robinson, S., 2007, Simulation: The Practice of Model
Development and Use. Wiley.

[16] van Der Vlist, E., 2002, XML Schema The W3C’s
Object-Oriented Descriptions for XML. O’reilly Media,
1st ed.

http://code.google.com/p/lsdsimulation/
http://www.cangenetest.org/

	Introduction
	Generic Simulator for Public Health
	Population-Based Hybrid Time-Driven Simulator
	Simulation Modelling
	Simulation Execution
	Information Flow

	Object-Oriented Architecture
	Simulator Configuration
	Process modelling
	Plugins
	XML Configuration Files
	Graphical User Interface

	Case Study: Osteoporosis
	Real-World Problem Presentation
	Conceptual Model
	Computer Model
	Simulation and Analysis

	Conclusion

