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Abstract

This paper presents a simple linear operator that ac-

curately estimates the position and parameters of ellipse

features. Based on the dual conic model, the operator

avoids the intermediate stage of precisely extracting indi-

vidual edge points by exploiting directly the raw gradient

information in the neighborhood of an ellipse’s boundary.

Moreover, under the dual representation, the dual conic can

easily be constrained to a dual ellipse when minimizing the

algebraic distance. The new operator is assessed and com-

pared to other estimation approaches in simulation as well

as in real situation experiments and shows better accuracy

than the best approaches, including those limited to the cen-

ter position.

1. Introduction

Precise estimation of an ellipse in an image usually

consists in accurately extracting contour points with sub-

pixel precision before fitting ellipse parameters on the ob-

tained set of points. Numerous methods have been pro-

posed for fitting an ellipse from a given set of contour

points [2–4, 6, 12, 14]. They differ from each other depend-

ing on their precision, accuracy, robustness to outliers or on

their ability to fit parameters on partial ellipse contours. All

these methods rely on a set of contour points that are ex-

tracted beforehand. Nevertheless, extracting contour points

usually subsumes multiple stages including gradient esti-

mation, non-maximum suppression, thresholding, and sub-

pixel estimation.

Extracting contour points imposes making a decision for

each of those points based on neighboring pixels in the im-

age. The following question thus arises. Is it possible to

develop a more direct method that precludes the extraction

of a set of contour points? One would directly exploit the in-

formation encoded in all pixels in the ellipse neighborhood.

By eliminating precise contour point extraction, the method
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Figure 1. (a) Image of a calibration target. The
marked region indicates the pixels contribut-
ing to the ellipse estimation. (b) Close-up

view of the marked region. (c) Close-up view
of the region identified in (b) where the im-
age gradient orientation and magnitude are

represented by arrows superimposed on the
image. A dotted line depicts the fitted ellipse
contour.

would be greatly simplified and the uncertainty on the re-

covered ellipse parameters will be assessed more closely to

the image data. Another motivation for developing such an

approach is the possibility to process low contrast images

where each contour point can hardly be extracted along the

ellipse.

Formally, given a set of pixels describing a complete el-

lipse in a real image, what are the ellipse parameters? Al-

though the limitation to complete ellipses might appear re-

strictive, it is of great interest for camera calibration and

precise measurement applications where it is common to

use physical circular targets that project into ellipses in an

image [10]. In these applications, partial ellipses lead to a

less reliable estimation and are generally avoided. In Fig.

1(a), a rectangular area enclosing an ellipse is shown. We

develop a method that can fit the ellipse’s parameters from

all the pixels that lie inside such an area or preferably nearby

the ellipse’s contour. More precisely, we will show how one

can estimate the ellipse’s parameters directly from the gra-

dient vector field. Fig. 1(c) is a close up view where the



gradient vector field as well as the fitted ellipse contour are

superimposed on the image.

The most relevant work to ours is that of Forstner who

developed an operator for extracting circular and corner fea-

tures in an image [5]. In this extraction process, detec-

tion is decoupled from localization. For localizing features,

the detection of individual contour points is avoided by di-

rectly processing the gradient components of the image in

the neighborhood of a detected feature. In this paper, we

show how it is possible to extend the basic principle for the

estimation of ellipse parameters. For that purpose, we will

exploit the dual conic model and we will show that one can

easily constrain the dual conic to a dual ellipse. The result-

ing linear algorithm is of remarkable simplicity and pro-

vides results as precise and accurate as the best methods. It

also makes it possible to fit ellipses in images where indi-

vidual contour points would be unreliable.

A review of widely used methods for estimating ellipse

parameters, including those limited to center position esti-

mation, is presented in the next section. Then, Forstner’s

original method is described before developing the new op-

erator in Section 3. Finally, a series of comparative exper-

iments for assessing the relative accuracy and precision in

presence of noise and blur is presented in Section 4.

2. Related work

An ellipse can be estimated from the image intensity or

its gradient. Intensity based methods are also referred to

as direct methods [16] when they directly exploit the image

intensity with no transformation or derivation. One simple

method which returns the coordinates of the feature is the

gray-scale centroid; for a given region, the intensity of each

pixel is used to weigh its contribution to the estimation of

the intensity center of mass. Integrating over all pixels in

the region provides good immunity to noise. However, in-

tensity based methods like centroid estimation are partic-

ularly sensitive to non-uniform illumination. The causes

of non-uniform illumination are frequent and various, e.g.

light sources, vignetting or reflections on specular surfaces.

Gradient based methods are less affected by non-uniform

illumination. Nevertheless, the derivation process involved

makes them more sensitive to noise. Generally, these lat-

ter methods are composed of two distinct steps; the edges

of a region are first identified after non-maxima suppres-

sion and a conic is fitted to the edge points. Methods to

fit a conic to points are abundant with complexity rang-

ing from linear least-square estimation to iterative proce-

dures with renormalization [12]. The simplest method,

linear least-square, minimizes the algebraic error associ-

ated with the points. Since the linear system is homoge-

neous, a constraint must be imposed on the conic parame-

ters Θ = [A, B, C, D, E, F ]T to avoid the trivial solution

Θ = 0. Many possible constraints were studied in order to

estimate the best conic from a set of points, e.g. F = 1,

‖Θ‖ = 1 (see [4, 14] for a review). Nevertheless, it is es-

sential for a conic estimator to be invariant to Euclidean

transformations (translation, rotation, scale) [1]. More pre-

cisely, estimating a conic from a transformed set of points

should be exactly equivalent to transforming the conic es-

timated from the untransformed set of points. According

to this statement, the constraints ‖Θ‖ = 1 and F = 1 are

not invariant. On the other hand, the expression 4AC−B2

is a conic invariant and can be formulated as the quadratic

constraint 4AC−B2 = 1. Under this constraint, the parame-

ters minimizing the algebraic error, which are obtained via

a generalized eigensystem, describe elliptical shapes [3].

However, in the presence of partial ellipses, this method,

and all other methods based on the algebraic error, will un-

derestimate the eccentricity of the ellipse [18]. Different

iterative algorithms were introduced to reduce or compen-

sate the bias [2, 12]. Still, given that ellipses are complete,

the effect of the bias is practically nonexistent and there are

no significant differences among high quality fitting meth-

ods [4]. In this situation, it is advantageous to employ the

simplest method.

Estimating a conic from pixels’ centers identified as lo-

cal maxima is generally inaccurate. A better estimation is

obtained from the edge points whose positions are known

with subpixel precision. A simple way to achieve subpixel

precision is to perform a parabolic interpolation of the gra-

dient maximum along the edge direction. The solution is

direct but the interpolation is sensitive to noise. An alter-

native is proposed in [17] where an ideal step edge is fitted

to the image intensity value such that the first three sample

moments are preserved. The fitting is done over a circular

region centered at the gradient local-maximum which pro-

vides a larger fitting area, thus greatly reducing the sensi-

tivity to noise. However, the location can be biased if the

edge is curved inside the region. To reduce the bias in the

presence of curved edges, a correction term based on the lo-

cal curvature of the contour was proposed in [15] and later

refined in [9]. This leads to even more complex methods.

By contrast, a method directly exploiting the gradient in the

region encompassing an ellipse could greatly simplify the

location process.

A radically different approach was proposed by Forstner

[5] for the localization of corners and most importantly, of

circular features. In his approach, individual edge detection

is avoided; the feature’s location is estimated directly from

the image gradient calculated in a region encompassing the

feature. Actually, the gradient at a pixel in the neighbor-

hood of a feature edge provides the orientation of a 2D line

passing through the pixel center. The location of a feature

is obtained by estimating the intersection point of a set of

these lines in the feature’s neighborhood. The operator can
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Figure 2. (a) Lines parallel to the circle gradi-

ent vectors intersect at the circle center. (b)
Lines parallel to the ellipse gradient vectors
are not convergent. (c) Lines perpendicular

to the ellipse gradient vectors are tangent to
the ellipse.

be adapted to locate corners, where the lines are oriented

perpendicularly to the gradient and intersect at the corner lo-

cation, or circle centers in which case the lines are oriented

parallel to the gradient as shown in Fig. 2(a). The inter-

section point is estimated by means of least-squares where

each line contributes with a weight set proportional to the

squared magnitude of the gradient [5].

Although very simple and fast, the Forstner operator is

not adapted to locate elliptical feature centers; the lines de-

fined by the gradient on the boundary of an ellipse do not

converge as shown in Fig. 2(b). Since ellipses are more

general and frequent in images, it is interesting to develop a

new operator inspired by the same principle. Another mo-

tivation for improving the Forstner operator is to reduce the

effect of the gradient orientation error hampering the oper-

ator. Actually, noise causes small angular errors in the gra-

dient orientation. For circles, these errors cause a leverage

effect due to the distance between the edges and the inter-

section of the lines. A small orientation error for an edge

that is located farther from the estimated line intersection

will produce a greater error than a closer edge. In the next

section, we propose a new operator that circumvent these

limitations.

3. Description of the new operator

3.1. Background on conic and dual conic

A conic is a planar curve formed by the intersection of a

plane with a circular cone. Generally the term conic refers

to a point conic, defining an equation on points. In pro-

jective geometry the role of homogeneous points and lines

can be interchanged; this is known as the duality relation-

ship. As a result, there is a dual conic (see Fig. 2(c)) which

defines an equation on lines instead of points [8]. More

precisely, a point, xi = [ui, vi, 1]T , in homogeneous coordi-

nates lies on the conic C =




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2

C E
2

D
2

E
2

F


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xT
i Cxi = 0. (1)

In a similar way a line li = [ai, bi, ci]
T

is tangent to the dual

of conic C iff

lT
i C∗li = 0, (2)

where C∗ is the inverse matrix of C, given full rank ma-

trix. It is interesting to note that the dual conic center

ec = (uc, vc) is obtained directly from the parameters. Ac-

tually, if the pole of a line l is defined as a point x such that

x = C∗l, then the center of the dual conic is the pole of the

line at infinity [11],

λ [uc,vc,1]T =

[

D∗

2
,

E∗

2
,F∗

]T

= C∗l∞. (3)

Given a set of lines li, the vector of parameters Θ =
{A∗, B∗, C∗, D∗, E∗, F∗} of the dual conic C∗ can be es-

timated by linear least-squares. The estimation is accom-

plished by finding Θ for which Φ(Θ) reaches a minimum,

Φ(Θ) = ∑
i∈R

ωi

(

lT
i C∗ (Θ) li

)2
, (4)

where R contains the set of lines contributing to the dual

conic estimate and ωi is a weighting factor. Since li is a

triplet of homogeneous coordinates, the scale of the lines is

indeterminate. It can be fixed such that ‖a,b‖ = 1. Normal

equations derived from Eq. (4) are linear in Θ and lead to

the following form:

[

∑
i∈R

ω2
i KiK

T
i

]

[Θ] = 0, (5)

where Ki is composed of line coefficients such that Ki =
[

a2
i , aibi, b2

i , aici, bici, c2
i

]T
. This system can be solved

under the constraint ‖Θ‖ = 1 using the singular value de-

composition (SVD). However, this constraint is not invari-

ant to Euclidean transformations [1]. A more appropriate

constraint is introduced in the next section.

3.2. From dual conic to dual ellipse

The conic discriminant can be imposed as 4AC−B2 = 1

as proposed in [3] to obtain an ellipse specific fitting. From

the duality relationship between points and lines, we know

that a similar constraint can also be derived for the dual

conic. Since a conic and its dual are related by the ma-

trix inverse operation, the dual conic parameter F∗ can be

expressed in terms of the parameters of the conic C:

F∗ =
1

4 |C|
(

4AC−B2
)

=
1

|C|

∣

∣

∣

∣

A B/2

B/2 C

∣

∣

∣
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. (6)



In this expression, the factor 1

4|C| can be canceled out since

C∗ is known up to a scale factor. Hence, the conic discrim-

inant 4AC−B2, which is strictly positive for ellipses [3], is

intrinsically related to the term F∗. From Eq. 6, the dual

ellipse condition becomes F∗ > 0. If the scaling of C∗ is

incorporated into the condition, one obtains the dual ellipse

fitting constraint F∗ = 1. The normal equations of the new

system of five unknowns Θ′ = (A′∗, B′∗, C′∗ ,D′∗ ,E ′∗) hold

the following matrix form:

[

∑
i∈R

ω2
i K′

i K
′T
i

]

[

Θ′] = ∑
i∈R

−ω2
i K′

i c
2
i , (7)

where K′ is composed of the first five elements of K.

Although invariant to Euclidean transformations, the

system could be sensitive to numerical error. Improving

the conditioning of the equation system by means of data

normalization will benefit the estimation process [7]. Line

normalization is done by first shifting the origin of the co-

ordinate system to an approximation of the center of the

ellipse area and then scaling the axes such that the mean

distance of the lines to the origin becomes
√

2.

3.3. The Localization Operator

The image gradient near a contour naturally provides the

orientation of the contour normal. Therefore, given a set of

pixels belonging to a neighborhood enclosing an ellipse, a

set of lines can be constructed to solve for Eq. (7). More

precisely, when the image gradient ∇Ii = [Iui, Ivi]
T

at a pixel

xi is not null, it defines the normal orientation of a line pass-

ing through the pixel center such that:

li =

[

Iui

‖∇Ii‖
,

Ivi

‖∇Ii‖
, − ∇IT

i

‖∇Ii‖
xi

]T

. (8)

To improve robustness to noise on gradient orientation in

nearly constant area, the weights ωi in Eq. (7) are set equal

to the squared gradient magnitude [5],

ωi = ‖∇I (xi)‖2 . (9)

If needed, the conic C can then be obtained from the inverse

of C∗. The resulting operator requires very few steps and

computations. Actually, each pixel of the region contributes

to the construction of a 5x5 matrix in Eq. 7 which is then

inverted.

Once the parameters are obtained, one can further esti-

mate the variance-covariance matrix of the ellipse parame-

ters which is particularly meaningful. The 2x2 submatrix

including D∗, E∗ and their covariance term, directly pro-

vides the uncertainty of the center coordinates which is an

interesting characteristic of the dual representation. The

complete variance-covariance matrix, S(Θ′), is obtained

from the following relation:

S
(

Θ′) =
(KΘ)T

W (KΘ)

n−5

(

K′TWK′)−1
(10)

where W is a diagonal matrix with ω2
i as entry and n is the

number of pixels in the region. Obtaining the covariance

matrix of the dual ellipse center coordinate is direct:

S(uc,vc) =
1

4
S(D∗,E∗) = S

(

D∗

2
,

E∗

2

)

. (11)

4. Experiments

Four experiments were carried out to assess the new dual

ellipse operator on complete ellipses. First the accuracy is

assessed and compared to four other approaches in simula-

tion. In this part, the ground truth enables any bias of the

operator to be uncovered. Then, the sensitivity to blur is

assessed in simulation. In the presence of image blur, the

edge transition is distributed over more pixels. This reduces

the gradient magnitude of the edge hence the signal to noise

ratio when noise is present. Next, the accuracy is assessed

when the dual ellipse is estimated from regions covering

gradually increasing proportions of the edge transition. Fi-

nally, the flexibility of the new operator is demonstrated in

real conditions on low contrast images where contours are

difficult to identify reliably.

In the experiments, the proposed operator is compared to

the original Forstner operator for circular features (FCO), to

the gray-scale centroid and to a point ellipse fitting method

that is similar to the one proposed in [10]. In this last

method, the edge points of the feature are detected and

their positions are refined to subpixel precision [9]. An el-

lipse is then estimated from the points with a direct least-

squares fitting procedure that imposes an ellipse constraint

[3]. To show the importance of subpixel correction, the

results for ellipse estimation from the uncorrected local-

maxima points are also included. It is important to note that

the FCO and centroid methods only extract the feature cen-

ter. The experiments focus on the center estimation but the

dual ellipse method also extracts the complete set of para-

meters. When it is required for a given approach, the image

gradient is calculated using the same 5x5 Gaussian deriva-

tive filter.

To simplify the experiment procedure, the detection is

decoupled from the localization. The experiment images

contain contrasting ellipse features which produce a clear

bimodal distribution of the gradient magnitude. This allows

the setting of an automatic threshold [13] which results in

a coarse identification of the ellipse edge transition region.

In Fig. 3, such a region identified with gradient threshold-

ing is displayed in white along with a plot of the gray levels
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Figure 3. Regions identification procedure for

the localization operator. The top row shows
an individual ellipse image and the bottom is

a plot of its cross-section. The solid lines
represent the intensity value of the ellipse
and the dashed lines depict the gradient mag-

nitude. A threshold is computed from the
gradient and is shown with a red line in (a).
The region identified, shown in (b), is then di-

lated resulting in a wider region containing
the complete edge transition, which is ob-
servable in (c).

and gradient magnitudes of the ellipse cross-sections. Iden-

tifying all the pixels where the transition occurs will benefit

the operators. This can be achieved by doubling the area

of the region with a dilation process. The complete proce-

dure is illustrated in Fig. 3. For the accuracy versus noise

and blur experiments, the contributing regions were identi-

fied following this procedure. For instance, point ellipses

were estimated from thresholded local maxima belonging

to these regions. In the case of the centroid, the ellipse in-

terior area was added to the region. In all simulations, the

region delimiting the ellipse edge transition is defined be-

fore adding noise to the image.

4.1. Accuracy versus noise

In simulation, synthetic gray-scale images of ellipses are

generated with their actual positions precisely known. The

pixel intensities are set inversely proportional to their areas

inside the actual ellipse before smoothing using a Gaussian

filter of σ = 0.5. Next, the images are contaminated with

additive Gaussian noise with standard deviation increasing

from σn = 0 to 5 percent of the image dynamic range. For

each noise level, the mean and max error of the ellipse po-

sition are evaluated on 150 different single ellipse images.

Actually, besides adding noise, a different ellipse is gen-

erated in each image. The ellipse center coordinates, axes

and angle are generated randomly. While the ellipse center

coordinates are restricted to lie within a 5.0 pixel radius of

the image center, the axes and angle of the ellipse vary ran-

domly within the range [5.0,15.0] pixels and [−π/2,π/2]
radians respectively. The positioning errors are compiled in

Table 1. The top row includes sample images superimposed

with ellipses whose parameters were obtained from dual el-

lipse fitting. The bottom row displays the same images with

the uncertainty ellipses (1σ ) on the center coordinates su-

perimposed (enlarged by a 250x factor).

The simulation results indicate that FCO is the most sen-

sitive to noise. Actually, although it exploits the set of lo-

cal edges, it does not impose the more global constraint of

an ellipse geometric model. Since the gray-scale centroid

method averages over all pixels of the feature, it shows high

immunity to noise. The dual ellipse fitting is the most accu-

rate in low noise conditions. As noise increases, the estima-

tion of the gradient orientation becomes less precise and the

dual ellipse and subpixel point ellipse methods then present

similar accuracy. The high error obtained from ellipse fit-

ting on raw points is due to random leaps of position of the

local maxima caused by image noise. This confirms the im-

portance of an accurate subpixel correction step for point

ellipses. Although the results are not included here, the ex-

periment was in fact repeated with circular features where

the ellipses axes were set equal. As expected, the FCO error

was reduced by an average of 15% but remained far from

the precision of the best methods. The leverage effect of

the gradient orientation error interfering the FCO is nonex-

istent for the dual ellipse operator. Finally, the distribution

of the error vectors confirmed the absence of bias for all of

the operators.

4.2. Accuracy versus blur

Sharp and well focused images are obviously preferable

when locating ellipses. However, in practice, images are

rarely in perfect focus which results in edge transition be-

ing distributed over several pixels. In this section we assess

how focus and blur affect the accuracy of the ellipse cen-

ter estimation for the dual ellipse and subpixel point ellipse

operators. For this purpose, random ellipse images are gen-

erated following the procedure given in the previous sec-

tion. They are then blurred by successive convolutions with

a Gaussian filter of σ = 0.5. Blurring directly affects the

width of the edge transition. Next, the images are conta-

minated with additive Gaussian noise and the ellipses are

estimated. For each convolution count, a series of 150 new

images is generated and the mean error of the estimated el-

lipse center is evaluated. The experiment is repeated for

three image noise levels (σn = 0%,σn = 2%,σn = 5% of

the image dynamic range). The results are compiled in Fig.



Table 1. Error on the center estimation (in pixels) for five location methods given at six noise levels

Noise level σn (percent) 0 1 2 3 4 5

Mean (Max) Mean (Max) Mean (Max) Mean (Max) Mean (Max) Mean (Max)

DualEllipse 0.002 (0.006) 0.005 (0.012) 0.009 (0.022) 0.014 (0.036) 0.020 (0.047) 0.023 (0.060)

PointEllipse 0.008 (0.017) 0.008 (0.021) 0.011 (0.028) 0.015 (0.042) 0.021 (0.054) 0.023 (0.063)

PointEllipse1 0.170 (0.327) 0.167 (0.293) 0.161 (0.295) 0.166 (0.283) 0.169 (0.309) 0.169 (0.298)

Centroid 0.012 (0.026) 0.015 (0.055) 0.020 (0.050) 0.024 (0.069) 0.033 (0.091) 0.039 (0.109)

FCO 0.079 (0.208) 0.089 (0.215) 0.123 (0.392) 0.161 (0.620) 0.219 (0.606) 0.241 (0.734)

1 Without subpixel correction

4. In the figure, the bottom horizontal axis reveals the con-

volution count whereas the top horizontal axis reveals the

corresponding edge transition width in pixels. The gray re-

gion delimits the mean standard deviation estimation of the

dual ellipse center coordinates.

In the absence of noise, the plot in Fig. 4(a) shows the

error of the dual ellipse operator decreasing with blurring,

which confirms that the dual ellipse operator is mostly not

affected by image blur. Although blurring distributes the

edge transition over several pixels, all pixels still contribute

to the estimation. Inversely, the error of the subpixel point

ellipse operator increases since the subpixel correction step

does not adapt to different edge widths. In Fig. 4(b) and Fig.

4(c) we observe a sudden increase in the error progression

rate for the point ellipse operator when image blur increases

in the presence of noise. The sudden change is due to the

appearance of noisy gradient local maxima in the edge tran-

sition region, that have a magnitude similar to those of the

ellipse edge. These points are mistakenly interpreted as el-

lipse contour points and bias the estimation. The error pro-

gression of the dual ellipse operator remains constant since

all pixels of the transition region contribute. Moreover, the

increasing uncertainty of the center coordinates clearly re-

flects the degradation of the accuracy by noise and blur.

This information can be exploited to assess the relative pre-

cision of target estimation in an image.

4.3. Accuracy versus estimation area

In the preceding experiments all the pixels of the ellipse

edge transition contributed to the dual ellipse estimation.

While this is intuitively preferable, it was also suggested

that a bounding box region enclosing the ellipse could be

selected. In this section, we analyze how the coverage of

the edge transition affects the accuracy of the dual ellipse

operator. To accomplish this, random ellipse images are

first generated following the procedure given in Section 4.1.

They are then blurred by successive convolutions with a

Gaussian filter (σ = 0.5) so that the width of the edge tran-

sition reaches six pixels. Next, the images are contaminated

with additive Gaussian noise before estimating the ellipse.

An example of such an image with additive Gaussian noise

of σn = 2% is given in Fig. 4(b) right. The region from

which the dual ellipse is initially estimated contains the gra-

dient local maxima describing the ellipse contour extracted

before adding noise. An example of such a region is shown

superimposed to its corresponding image in Fig. 5(a). The

region is then successively dilated with a 3x3 structuring

element. The progression from a one-pixel region to an

area covering a region larger than the ellipse is illustrated

in Fig. 5. For each dilation count, a series of 150 new

images is generated and the mean error of the estimated

ellipse positions is evaluated. The experiment is repeated

for three image noise levels (σn = 0%,σn = 2%,σn = 5%

of the image dynamic range). The mean error is plotted in

Fig. 6 with respect to the dilation count (bottom horizon-

tal axis) and the corresponding annular region width (top

horizontal axis). The plot in Fig. 6 depicts the mean el-

lipse center error after each dilation for three noise levels,

σn = 0%,σn = 2%,σn = 5% of the image dynamic range.

The high error observed initially for low noise conditions

(σn = 0% and σn = 2%) in Fig. 6 decreases quickly as the
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Figure 4. Error on the ellipse center estima-
tion in pixels with respect to image blur for

three noise levels. (a) σn = 0% (b) σn = 2% (c)
σn = 5%. The sample images are given after
1, 12 and 24 convolutions respectively. The

thick solid line represents the error for the
dual ellipse operator while the dashed line
depicts the error of the subpixel point ellipse

operator. The gray region delimits the esti-
mated standard deviation of the dual ellipse
center.

(a) (b) (c)

Figure 5. (a) Initial region containing the lo-
cal maxima of the image gradient. (b) Initial
region after performing 4 dilations. (c) Initial

region after performing 20 dilations.
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Figure 6. Error on dual ellipse centers in
pixels when estimated from different propor-
tions of the edge transition for three image

noise levels (σn = 0%, σn = 2% and σn = 5%).

region expands and covers a higher proportion of the el-

lipse edge transition. The breaking point observed after 2

dilations, where the region reaches the width of the edge

transition, confirms the importance of all transition pixels

in the estimation. Moreover, we observe no significant loss

of accuracy as the region expands beyond the edge transi-

tion. The operator weighs each pixel by the squared gra-

dient magnitude hence it is not affected by pixels in flat

regions. However, when the noise reaches 5%, the error

slightly increases as the region expands. This tendency is

due to the increasing importance of noisy pixels in the es-

timation. It is also present but non significant in the curves

with noise σn = 2%.

4.4. Low contrast image

The last experiment shows the strength of the new

method in a low contrast situation where meaningful edge

points can hardly be extracted. Such a situation is shown

in Fig. 7. The image was obtained by aiming a desktop

projector to a planar object which created a blurry and non-

uniform image. The thresholded gradient local-maxima ob-

tained after smoothing the image can be observed in Fig.

7(a) where it is superimposed onto the image. The local

maxima are sparse, unconnected and do not belong to a well

defined contour. However the global structure of an ellipse

is present. The dual ellipse estimated from all the pixels of

the image can be seen superimposed upon the original im-

age in Fig. 7(b) and onto the gradient in Fig. 7(c). This type

of low contrast image can also be handled with active con-

tours methods [18]. However, the proposed operator is non



(a) (b) (c)

Figure 7. Images of a light spot illustrating
a difficult case of ellipse estimation. (a) In-
dividual edge points. (b) The estimated el-

lipse superimposed onto the original image.
(c) The estimated ellipse superimposed onto
the image gradient magnitude. Brighter pix-

els represent higher gradient magnitudes.

iterative and imposes an ellipse constraint on the recovered

shape which improves the quality of the solution.

5. Conclusion

The new linear operator combines the advantages of the

most precise ellipse fitting methods with the simplicity of

the Forstner operator as well as its capability to work on

the raw image gradient. The absence of precise contour

point extraction makes it faster and simpler than point conic

methods and allows the uncertainty of the parameters to be

evaluated directly from the raw gradient image. Although

the dual ellipse is estimated from pixels present in the el-

lipse edge transition, it needs not to be limited to that region.

Weighing with the squared gradient magnitude enables the

operator to process all the pixels that lie in a region enclos-

ing a single ellipse. Furthermore, the operator efficiently

constrains the dual conic to a dual ellipse when minimizing

the algebraic error.

More robust estimation techniques can also be easily ap-

plied in replacement of the least-squares if that were nec-

essary for a given application. Although we have not con-

sidered partial ellipses, it might be interesting for some ap-

plications requiring less accuracy, to investigate this kind of

more direct method.
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