
ESAIM: PROCEEDINGS, November 2002, Vol.12, 146-153

M.Thiriet, Editor

MODELLING LIVER TISSUE PROPERTIES USING A NON-LINEAR

VISCOELASTIC MODEL FOR SURGERY SIMULATION ∗
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Abstract. We introduce an extension of the linear elastic tensor-mass method which allows fast
computation of non-linear and viscoelastic mechanical deformations, and is suitable for the simulation of
biological soft tissue deformation. We aim at developing a simulation tool for the planning of cryogenic
surgical treatment of liver cancer. Percutaneous surgery simulation requires accurate modeling of
the mechanical behavior of soft tissues, and experimental characterizations have shown that linear
elasticity is only a coarse approximation of the real properties of biological tissues. We first show that
our model can simulate different types of non-linear and viscoelastic mechanical behaviors at speeds
which are compatible with real-time applications. Then an experimental setup is presented which was
used to characterize the mechanical properties of deer liver tissue under perforation by a biopsy needle.
Experimental results demonstrate that a linear model is not suitable for simulating this application
while the proposed model succeeds in accurately modeling the mechanical behavior of liver tissue.

Résumé. Nous présentons une extension de la méthode des masses-tenseurs élastique linéaire perme-
ttant le calcul de déformations mécaniques non-linéaires et viscoélastiques, et adaptée à la simulation
de déformations de tissus biologiques mous. Notre objectif est de développer un outil de simulation
du traitement du cancer du foie par cryochirurgie. La simulation de chirurgie percutanée nécessite
une modélisation précise du comportement mécanique des tissus mous, et plusieurs caractérisations
expérimentales ont montré que le modèle élastique linéaire n’était qu’une approximation imprécise
des propriétés de tissus biologiques. Nous montrons d’abord que notre modèle peut simuler différents
types de comportements mécaniques non-linéaires et viscoélastiques à des vitesses compatibles avec la
construction d’applications en temps réel. Puis nous présentons un montage expérimental utilisé pour
caractériser les propriétés mécaniques du foie de cerf lors de la perforation par une aiguille à biopsie.
Les résultats expérimentaux démontrent qu’un modèle linéaire n’est pas adapté à la simulation d’une
telle application, alors que le modèle proposé est capable de reproduire avec précision le comportement
mécanique du foie.

Introduction

The development of surgery simulation systems requires fast algorithms to allow real-time computation
of tissue deformations, as well as accurate modeling of soft tissue mechanical behavior. We are currently
developing a simulation tool for the planning of percutaneous image-guided cryosurgical treatment of liver
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cancer. This therapy consists in destroying tumor cells through successive application of freezing and passive
thawing cycles [9]. Careful planning is required to optimize the destruction of tumor cells while limiting damage
to surrounding healthy cells. For the simulation system to be efficient, accurate modeling of the geometric,
thermal, and mechanical behavior of organs is required.

Several methods have been reported for fast calculation of linear elastic mechanical deformations. Some of
them are based on non-physical constructions, such as the linked volume representation introduced by Gibson et

al. [4]. Physical models are more widely used, from relatively simple models such as the spring-mass model [5]
to models based on continuum mechanics such as the Finite Element Method [3]. However, experimental
characterizations suggest that linear elasticity is only a coarse approximation of the real properties of biological
soft tissues. For example Miller et al. [8] identified a viscoelastic constitutive model as accurate for modeling
brain tissue deformations. Pioletti et al. [11] studied the properties of human knee ligaments and introduced a
model containing a linear elastic term and two viscoelastic terms.

Since surgery simulation requires accurate description of soft tissues, we moved towards a more precise
mechanical model than linear elasticity. The most promising approach towards real-time computation of non-
linear viscoelasticity appeared to be the tensor-mass model introduced by Cotin et al. [3]. The tensor-mass
algorithm for linear elasticity is both time-efficient and physically accurate. It also allows local topological
changes on mesh elements so that simulation of cutting or perforation is possible.

1. Mechanical model

1.1. Tensor-mass system

The dynamic linear elastic tensor-mass model was introduced by Cotin et al. [3]. The modeled object is
discretized into a conformal tetrahedral mesh as defined by finite element theory. Inside every tetrahedron Ti,
the displacement field is defined by a linear interpolation of the displacement vectors of the four vertices of the
tetrahedron. The linear elastic energy of tetrahedron Ti can then be expressed as a function of the displacements
of the four vertices and of the two Lamé coefficients of the material λi and µi. The force FTi(j) applied to a
summit PTi(j) of tetrahedron Ti is defined as the derivate of the elastic energy and takes the following form:

FTi(j) =
3

∑

k=0

[KTi

jk ] ·P0
Ti(k)PTi(k) (1)

where P0
Ti(k) are the rest positions of the four vertices of tetrahedron Ti, PTi(k) are the current positions of the

vertices, and [KTi

jk] are 3 × 3 stiffness tensors depending only on the rest geometry of tetrahedron Ti and on
the Lamé coefficients. These tensors can be precomputed, therefore computation at run-time is restricted to
matrix-vector multiplications and matrix summations.

Given a complete mesh, the total elastic force Fi applied on a vertex Pi is obtained by summing the forces
contributed by all adjacent tetrahedra of Ti:

Fi = [Kii] ·P
0
i Pi +

∑

j∈N(Pi)

[Kij ] ·P
0
jPj (2)

where [Kii] is the sum of tensors [KTk

ii ] associated with the tetrahedra adjacent to Pi, [Kij ] is the sum of tensors

[KTk

ij ] associated with the tetrahedra adjacent to edge (i, j), and N(Pi) is the neighborhood of vertex Pi.
The resulting system has to be solved dynamically. The motion of the system is determined by a Newtonian

equation which takes the form:

miP̈i + γiṖi − Fi = 0 (3)

where mi is the mass associated to vertex Pi and γi the damping coefficient associated to vertex Pi. In
relation (3) the mass and damping effects are supposed to be lumped at vertices.
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Different integration schemes can be chosen to solve the dynamic system [1]. We chose an explicit scheme
based on the Euler method, because it offers the best compromise between computational speed and stability
of the system. Vertex position at time t + h is derived from its positions at times t and t − h, and from the
elastic force computed at time t:

Pi(t + h) =
1

mi + γih

(

h2Fi(t) + (2mi + γih)Pi(t)−miPi(t− h)
)

(4)

1.2. Non-linearity modeling

In equation (1), the force field is expressed as a linear combination of the displacements of the tetrahedron
vertices. One way to extend the model to non-linearity consists in considering higher order terms in the
expression of elastic energy. For example Picinbono et al. [10] describe a non-linear tensor-mass model based
on the St Venant-Kirchhoff elastic model which adds quadratic and cubic terms to expression (1). We rather
chose to keep a linear expression for the force and introduce non-linearity by acting on the stiffness tensor itself
so as to minimize additional computational burden. Modification of the stiffness tensor cannot be done in any
possible way but has to satisfy the isotropy principle for the material. Only two degrees of freedom remain when
all space symmetries have been considered, and they correspond to the two Lamé coefficients [2]. Therefore
acting on the Lamé coefficients is an easy way to modify the elastic properties of the material in real-time while
satisfying all isotropy constraints.

The expression of tensor [KTi

jk ] can be divided into two components proportional to λi and µi respectively:

[KTi

jk ] = λi[A
Ti

jk ] + µi[B
Ti

jk] (5)

where [ATi

jk ] and [BTi

jk ] also are 3× 3 tensors depending only on the rest geometry of tetrahedron Ti, which can
be precomputed. Therefore a non-linear expression can be computed under the form:

FTi(j) =

3
∑

k=0

(

[KTi

jk ] + δλ(Ti)[A
Ti

jk ] + δµ(Ti)[B
Ti

jk ]
)

·P0
Ti(k)PTi(k) (6)

where δλ(Ti) and δµ(Ti) are the non-linear corrections. δλ and δµ depend on the intensity of deformation of
the tetrahedron. The choice in their expression as a function of the shape of the tetrahedron determines the
kind of non-linear law being simulated. Examples of possible simulated laws are shown in section 2.2.

A quantization of the tetrahedron deformation intensity has to be defined as argument for δλ and δµ. Several
tetrahedron shape measures exist and are commonly used for assessing the quality of tetrahedra in finite element
meshes. Liu and Joe [7] discussed several of these measures and showed that they are equivalent, in the sense
that if one measure approaches zero, so do the others, and that all measures attain a maximum value only for
the regular tetrahedron. From that property, we assume that the choice of a particular shape measure does not
significantly affect the overall behavior of the system, and that this choice should be mainly directed towards
computational efficiency. With this in mind we chose to use the tetrahedron mean ratio as defined by Liu and
Joe [6].

1.3. Viscoelastic modeling

Experimental characterizations reveal that viscous effects cannot be ignored for an accurate description of
the mechanical properties of biological tissues. Viscoelasticity can easily be introduced into the tensor-mass
model, provided that the behavior be restricted to a simple linear viscous relation. We introduced a viscous
force that is proportional to the speed of deformation and to a viscosity coefficient ηi. After discretization
onto a tetrahedral mesh, the expression obtained is very similar to (1), except that deformation speed replaces

deformation, and a viscosity tensor replaces the stiffness tensor. Expression of the viscous force F
(v)
Ti(j)

applied
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a) b)

Figure 1. a) Undeformed mesh. b) Deformed mesh after compression was applied onto the
top. Only external edges are shown in b) for better clarity

to a vertex PTi(j) of tetrahedron Ti is then:

F
(v)
Ti(j)

=
3

∑

k=0

[KTi

jk ](v)
·

d

dt
P0

Ti(k)PTi(k) (7)

where [KTi

jk ](v) are 3 × 3 tensors depending only on the rest geometry of tetrahedron Ti and on the viscosity
coefficient ηi. The effect of the viscous term on the simulated mechanical behavior is illustrated in section 2.3.

2. Evaluation of the mechanical model

2.1. Model mesh

We performed a series of simulations in order to check the ability of our model to reproduce different types
of mechanical behavior. The mesh used for these tests is shown in figure 1a. It is a regular mesh composed
of 225 vertices and 768 tetrahedra. The length of the edge of each cubic compound is 1 cm, and each cubic
compound is divided into 6 tetrahedra. Compression is applied onto a triangular surface on top of the mesh.
Figure 1b shows an example of deformed configuration after compression.

2.2. Non-linearity simulation

Figure 2 shows examples of simulated non-linear tissue constitutive laws. Figure 2a plots defined relations
between Young’s modulus E and the tetrahedron mean ratio, and Figure 2b plots the resulting force obtained
in simulated compression. For tissue 1, stiffness increases sharply at a given ratio value. This results in the force
growing stepwise during compression, a new step is added every time a new mesh element reaches the threshold
value. For tissue 2, stiffness increases linearly with the ratio value. This results in the force being close to a
second order curve. In both cases, simulation on a macroscopic mesh correctly follows the constitutive law that
was defined.

2.3. Viscoelasticity simulation

The effect of the viscous part of our tissue model is analyzed in Figure 3. In figure 3a, a tissue with viscosity
coefficient η = 1000 Pa·s was modeled, and compression was applied with different velocities. In figure 3b,
tissues with different viscosity coefficients were modeled and compressed with the same velocity of 10 mm/s.
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a) b)

Figure 2. a) Relation between Young’s modulus E and the tetrahedron mean ratio for three
simulated tissues. For the linear case E = 3600 Pa. For all three tissues the Poisson coefficient
was ν = 0.4 . b) Resulting force as a function of displacement in a simulated compression
experiment. Compression velocity was 10 mm/s, time step for each iteration was 0.01 s

a) b)

Figure 3. Force as a function of displacement for simulated viscoelastic tissues. For all curves,
no non-linear function was introduced into the tissue model and compression is applied with
constant velocity. a) Different compression velocities for the same tissue of viscosity coefficient
η = 1000 Pa·s . b) Compression is applied with a velocity of 10 mm/s onto tissues with different
viscosity coefficients

The effect of the viscous term is an increased tissue resistance at higher compression speeds, as could be
expected. Because velocity was constant from the start in these simulations, a force overhead appears as soon
as compression starts. It can be noted that because of the dynamical nature of the model, a tissue model with
no viscosity still exhibits limited viscous behavior, since the force field propagates more slowly through the mesh
at higher compression speeds. This can be seen by comparing the curve for η = 1000, v = 1 on figure 3a with
the curve for η = 0, v = 10 on figure 3b.

2.4. Computation speed

On a 550 MHz Pentium II computer with 512 MB RAM, processing 100 iterations using the complete
viscoelastic model on the 768 tetrahedra mesh shown in figure 1 took 6.5 s. The complete viscoelastic model
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Figure 4. Experimental setup for the characterization of mechanical properties of liver

takes 5 times more computation time than the linear elastic tensor-mass method. The method remains suitable
to real-time applications, as several improvements can been considered in order to improve performance. The
non-linear and viscous computational overheads may be focused to a limited number of mesh elements where
the highest deformation rates occur. Parallel computing may be considered as well by dividing the complete
mesh into several submeshes.

3. Experimental validation

3.1. Experimental setup

We showed that the extended tensor-mass method presented above allows to compute non-linear viscoelastic
deformations at rates compatible with real-time applications. The next goal was to check whether this model
can accurately simulate the mechanical behavior of real biological soft tissue.

For this purpose, we designed an experimental setup to characterize the mechanical properties of biological
tissue in a perforation experiment. Experimental characterization was necessary because there is very little data
available in the literature about mechanical properties of very soft tissues such as liver. Furthermore precise
data is needed to adjust the parameters of the simulation model for further clinical applications.

The experimental setup is shown in figure 4. A 24 mm diameter biopsy needle was mounted on a 5 lbs
Totalcomp TMB-5 load cell. Vertical movement was controled by a step-motor whose velocity ranges from 0
to 10 mm/s. The needle perforated a sample of deer liver placed in a cylindrical container. The force exerted
onto the needle and needle position were acquired at 500 Hz by an A/D sampling board and plotted.

3.2. Results

A series of measurement have been conducted on deer liver using this setup. The needle was moved vertically
at constant velocity and compressed the liver until perforation of the liver membrane. The force exerted onto
the load cell was measured and plotted against needle displacement. Three different velocities were considered,
2, 6 and 10 mm/s. For each velocity, 10 independent experiments were carried out.

Results showed to be highly reproducible. At a given velocity, force curves are very similar, independently of
the position where the needle was applied. Only the point where membrane rupture occurs is variable, but this
variability does not affect the behavior before rupture. We first used 5 curves taken at 2 mm/s to estimate the
parameters used in the simulation model and reproduced the experimental conditions in simulation. The black
curve on figure 5a plots the simulated force while the light gray curves are those used for parameter adjustment.

On figure 5b, the same simulated curve is plotted along with the 5 other experimental curves measured for a
speed of 2 mm/s, which were not used to determine simulation parameters. They show very good correspondence
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a) b)

Figure 5. Comparison between experimental and simulated force in liver tissue perforation.
The needle was moved vertically with a constant velocity of 2 mm/s. Simulated curve is in black,
experimental curves are in light gray. a) The 5 measurements used to adjust the parameters
of the simulation model. b) 5 other independent measurements. Experimental curves were
filtered for display clarity

a) b)

Figure 6. Comparison between experimental and simulated force for different perforation
velocities. Simulated curve is in black, experimental curves are in light gray. a) Velocity is 6
mm/s. b) Velocity is 10 mm/s. Experimental curves were filtered for display clarity

to the simulation curve as well. Only the behavior before rupture of the liver membrane has been modeled; the
sharp drop of the experimental curves corresponds to membrane rupture.

Finally the parameters derived from measurements at 2 mm/s were used as such to simulate perforations at
other velocities. Figure 6a displays results for a speed of 6 mm/s, figure 6b for 10 mm/s. The black curve shows
simulation, and the light gray curves show 5 independent measurements. For both velocities, the model closely
fits experimental data.

No systematic method has been used to fit model parameters, so different combinations of parameters may
be able to give equivalent or better results. An algorithm remains to be designed to conduct the fitting process
in order to ensure that the optimal solution would be found.
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4. Conclusion

We introduced an extension of the linear elastic tensor-mass method which allows fast computation of non-
linear viscoelastic deformations and is suitable for the simulation of biological soft tissue deformation. Several
experimental characterizations allowed us to demonstrate that this model succeeds in reproducing the mechanical
behavior of liver tissue in a compression experiment. To reach the goal of complete simulation of soft tissue
perforation, the behavior after perforation of the tissue membrane remains yet to be modeled. For a more
global characterization of the mechanical behavior, additional force or deformation measurement data would be
needed. A more complete experimental setup is under planning which will include load measurements on the
bottom and the sides of the tissue container. Additionally, performance of the method can be further improved
by the use of parallel computing and by a dynamical selection of the precision of the model depending on local
deformation conditions.
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