
Interaction-Centric Modelling for Interactive Virtual Worlds: the APIA
Approach

Francois Bernier, Denis Poussart, Denis Laurendeau, Martin Simoneau
Computer Vision and Systems Laboratory

Dept. of ECE, Laval University, Québec, Canada, G1K 7P4
{fbernier,poussart, laurend ,simoneau}@gel.ulaval.ca

Abstract

Conceptual modelling studies the different abstraction
methods of the real world. The conception and the execution of
virtual worlds depend strongly of the type of conceptual mod-
els. Existing modelling methods such as object-oriented
modelling are not appropriated when the main concern is the
dynamic reusability and interoperability. Such a reusability
and interoperability must be free of any human intervention.
This paper presents a new paradigm named Interaction-
Centric Modelling (ICM) that increases reusability and inter-
operability of virtual entities and behaviours.

1. Introduction

Virtual worlds can be augmented with highly realistic
models and it would be desirable that the developers of these
virtual worlds would reuse existing models or entities. Ideally,
entities that have not been designed to work together should be
able to interact without having to redefine the underlying
physical models. Such flexibility is mainly based on the inter-
operability of entities and reusability of entities and models.
Using a common graphical representation format like
VRML[1] increases the compatibility and the portability of
visual information. However, there is no standard for describ-
ing the interaction between independently created virtual enti-
ties. Since it is impossible to predict all possible combinations
of interactions between entities, the mechanism for implement-
ing the interactions must instead rely on a generic representa-
tion of an interaction. This flexibility can be described as
achieving dynamic relationships among entities in the virtual
worlds[2].

The interaction between entities is a topic that has been
analyzed in many fields. The interactions between virtual
entities themselves and between virtual entities and real-world
users are a subject study in the multi-users virtual environ-
ments. The plug-and-jack method[3], the object-oriented inter-
action model and group objects[4] are three paradigms that
increase an entity interaction capability. As another example,
DEVA3[5] proposed four sources of behaviour and the solu-
tion concerning virtual entity representation is based on com-
ponents. DEVA3 proposes the use of components to compose
objects dynamically, to add behaviours using scripting lan-

guages, and to implement dynamic inheritance. However,
inheritance restricts the reuse of entities because no universal
classification tree can satisfy all designers’ requirements.

All the paradigms presented above are entity-centred. The
consequence is that the entity can interact with a limited set of
entities, according to the compatibility connector plugged on
this entity or on the predefined set of known events.

Other approaches are less entity-centred. For instance,
Lee[6] presents an interesting method called interaction-based
programming that aims to increase the reusability for anima-
tions. This kind of programming takes apart the development
and the representation of algorithms for computation from the
algorithms for coordination. However, this method is specific
to animation.

This paper presents rules for designing conceptual models
that increase entities and behaviours reusability and interop-
erability at run-time. The first part presents elements that affect
the new abstraction underlying the paradigm. The second part
describes a new abstraction technique and a representation of
the real world that makes entities and behaviours more flexible
(reusable and interoperable) both during construction and
execution. This abstraction technique, the Interaction-Centric
Modelling (ICM), is the basis of the framework architecture
called Actor-Property-Interaction Architecture (APIA) devel-
oped in the context of the VERTEX project[7] Finally,
APIA’s unique features and flexibility are demonstrated
through an example.

2. Factors Having an Impact on Conceptual
Modeling

The granularity, the level of rigidity, the choice of the entity
and the nature of the relations between the entities largely
influence the choice of the conceptual models. The following
paragraphs will detail each of them.

The granularity has an impact on reusability and interop-
erability of the conceptual models. Fine-grained entities are
flexible but complex to manage and to interconnect. Coarse-
grained entities are easier to manage but they are not flexible
enough and cannot be reused easily. Since interoperability and
reusability are mainly targeted, the resulting solution has to be
more granular than existing ones. However, the increasing



complexity should be dealt with by implementing an adequate
structure and by a proper encapsulation of entities.

The level of rigidity is defined as the number of parameters
fixed when defining a conceptual model. For example, the
C++ language is undefined in regard of the simulation field,
making different simulation models strictly built on this lan-
guage non-compatible. On the other hand, over-defined archi-
tectures are useful for specific fields of application but too
restrictive for generic simulation architectures. The proposed
solution has to evaluate existing application fields and to find
the largest common denominator between these applications in
regard of reusability and interoperability criteria.

Finally, the representation of the real world in the virtual
world largely depends on the nature of each entity and its
relations with others. For instance, scene graph approaches like
VRML are based on the geometrical (in opposition to physi-
cal) representation of the real world. Aggregation (e.g. a scal-
pel into a human body) is used without assigning a meaning to
the relationship. On the other hand, the object-oriented model-
ling[8], (OOM), is an example of an abstraction of the real
world that implies a set of specific relationships between enti-
ties but that leaves the nature of the elements flexible. Most
problems encountered in OOM are mainly due to the misuse
of inheritance and aggregation. Reuse of behaviours, proper-
ties, and entities of the virtual world can be achieved in a better
way.

3. The Actor-Property-Interaction Architec-
ture

The approach proposed in this paper is based on a different
paradigm that departs from object-oriented modeling. The new
representation of the real world into virtual components fo-
cuses principally on the interactions between the entities in-
stead of centring the abstraction on entities themselves hence
the expression “Interaction-Centric Modeling” which we use
to characterize this approach. In brief, the resulting approach is
also more granular than OOM. The class concept is frag-
mented into three elements: property, interaction and charac-
ter. These basic elements are regrouped into a new container
called actor. These actors are linked together with concepts of
part-whole relationships borrowed from the cognitive sci-
ence[9]. The following sections expose the basic concepts of
the Actor-Property-Interaction Architecture (APIA) and the
rules that are proposed to build more reusable and interactive
virtual worlds.

3.1. Definitions

The first step consists in defining the required elements of
our virtual world. The user must define or reuse existing basic
elements like properties, interactions, characters and actors.
Two helper managers can be redefined for specific applica-
tions but the existing ones would be sufficient for most appli-
cations.

Actor: It is the entity of the simulation. The actor is the
“thing” that is simulated. Examples of actors are: submarine,

tumor, avatar, atom, mouse, virtual pilot, etc. The actor is
similar to a class in object-oriented modeling except that it has
neither attributes nor methods. It groups properties (attributes)
by dynamic aggregation and encapsulates relationships with
other actors when required.

Property: They represent physical or abstract data: mass,
velocity, position, Reynolds’s number, money, computer
mouse coordinates, etc. Properties are used instead of attrib-
utes because they are not encapsulated into an actor. They can
exist in many locations at the same time (distributed), have
some default behaviors, and can be modified only through
specific interactions. Of course smaller-grained properties are
easier to reuse.

Interaction: It is the link between the properties belonging
to the actors. The behaviors are implemented through the
interactions. Examples of interactions are: gravity, heat trans-
fer, robot control, missile launching, etc. They are sequences
of code, or algorithms, that apply some modifications on prop-
erties when called by the managers. The interaction knows
which properties are required. Usually, an interaction should
reuse existing properties instead of creating new ones.

Character: A character is a group of properties defined
under a specific name. A property is not specific to a character.
For example, a Collisionable character will group all required
properties like the geometry and the position of an object.

Interaction applicability manager: The first manager de-
cides whether or not and when an interaction must be applied
to an actor. It is the control part of the interaction. It can decide
whether the call to the interaction must be performed periodi-
cally or episodically (event). This manager is also useful to
restrict interaction applicability to spatial domains. This kind
of restriction limits the domain of interest of the interaction in
large environments.

Interaction call manager: The call manager decides how
the properties are sent to the interactions.

3.2. Character - Interaction Connection

Figure 1. Global view of character-interaction
association

The next step consists in connecting the characters and the
interactions together. An interaction can depend on one or
more characters, like illustrated in Figure 1. The properties
attributed to characters can be used by an interaction as input,
output or both. Moreover, default values can be defined at this
step in order to implement default behaviors.

P3

P4

P6

Character3

P5

Character2

Interaction1

In,out, inout

In,out, inout

In,out, inout

In,out, inout



3.3. Character-Actor Assignment

Figure 2. Character assignation to an actor
Assigning a character to an actor allows him to act and be-

have into an artificial world. As illustrated in Figure2, inheri-
tance is a good way to assign character(s) to an actor. This type
of inheritance, which can be compared to the class inclusion
relationship described in Winston and Al., means that an actor
is a kind of character. In this way, an actor knows how to
interact with other actors that inherit from complementary
characters. An actor can act and react with external actors in
different ways because it is compliant with some interactions.
It is not possible for an actor to inherit from another actor
because actors form a group concept onto which interactions
are applied and within which properties are stored.

Since actors inherit of the properties of the character, val-
ues for the inherited properties must be defined. At this step,
an actor can be instantiated into the virtual world.

3.4. Actor “part-of” Relationships

An actor can contain other actors. Traditionally, the
inclusion relationship was met in the geometrical representa-
tion (VRML) of the real world.

Figure 3. Aggregation of actors
The relationships between actors are useful but have many

confusing meanings. For example, “the tumour is in the liver”,
“the liver is composed of blood” and “the liver is composed of
lobes” are all examples of aggregation for which the type of
aggregation would be meaningful. APIA allows all kinds of
relationships as described by Winston et Al. in the taxonomy
of part-whole relationships. The interaction applicability man-

ager at run-time can use this information as will be seen in the
following section. Two of them, shown in Figure 2, are de-
scribed in the following paragraphs.

In the topological inclusion, an actor can be described as
included, or located, inside a volume or on the surface of an-
other actor. For instance, a scalpel is included into a patient
body. This information is useful for the interaction manager
applicability. For instance, collision detection between a sur-
gery tool and an organ is not required as long as the tool has
not entered the body.

The physical composition retains the idea of space or stuff
aggregation described by Wilston et Al: component-object,
portion-mass and stuff-object inclusion. Some interactions
apply differently on actors if these actors are related to other
actors by a meronymic inclusion. For instance, a liver is com-
posed of lobes. If the liver is removed from the virtual world,
the lobes must be also removed.

4. An Example using APIA

Figure 4. Representation of the construction-
execution of the simulation

Figure 4 illustrates an example using APIA in a medical
context. In such a virtual world, a surgeon can cut a liver with
a scalpel and freeze this same liver with a cryoprobe. Instead
of making entities interacting directly, APIA uses an indirec-
tion mechanism, the character. The Cut interaction applies
between the Cutable character and the Force Generator char-
acter. The Freeze interaction applies between a Heat Sensitive
character and a Heat Generator character. These characters
group some properties required by the interaction. An actor
will own all the properties of inherited characters.

Since the dependency between instantiated entities is ge-
neric, it is possible for the liver to inherit from a Heat Genera-
tor character and take into account the fact that the liver is
itself a heat generator.

Aggregator
Actor

Topological
Included Actor

Physical
Composed Actor

Topologic

Physic

Actor

P3 P4 P6

Character3

P2 P1 P4

Character1

P3

P4 P6 P2

P1



In this example, the Cut interaction could be called only
when the scalpel is located into the body, i.e. when the scalpel
is linked to the body with a topological inclusion. Such a
mechanism of activation delegates the control of the applica-
bility to the APIA applicability manager. In this way, a model
designer that defines all activation and scheduling rules could
execute its model into a complete simulator without requiring
a software specialist.

5. Implementation and Applications

The Actor-Property-Interaction Architecture has been im-
plemented into a distributed framework based on a real-time
release of CORBA named TAO[10]. In addition to the reus-
ability and the interoperability issues, this framework takes
into account other elements such as data distribution, real-time
simulation abilities and communication between the real world
and the virtual world. Current implementation of this frame-
work runs on Windows, Linux and could be ported to several
other operating systems.

APIA has been used in an underwater telerobotics applica-
tion conducted in cooperation with the Robotics Division of
the Hydro Québec Research Institute, IREQ. More specifi-
cally, APIA has been applied in a training simulation engine
for tele-operated submarines and in the real-time control of a
submarine communicating with a control centre with a
tether[11].

Cryosurgery planning, training, and assistance to the sur-
geon also benefited of the same architecture. The SKALPEL
project consists in modeling tumor tissue deformations[12]
and thermal heat transfer[13] caused by a cryogenic probe.
Theses models have been implemented and executed in APIA.
Organs, tumors and several cryogenic probes can be assigned
to actors. The thermal heat transfer as well as tissue deforma-
tion are computed by many interactions. Magnetic resonance
images are assigned to properties.

Both applications are being implemented using APIA’s
simulation engine. Accommodating these two applications has
been helpful in validating the APIA paradigm and its current
software implementation.

6. Conclusion and Future Work

The APIA architecture increases the possibility of interac-
tion of a virtual entity with a virtual world in a more dynamic
way. Instead of centring the communication problem between
entities on the entity itself, APIA focuses on an inter-entity
paradigm, the Interaction-Centric Modelling (ICM). More-
over, basic elements are finer-grained, thus allowing more
dynamic connections. However, such dynamic connections
imply more complex scheduling methods. In order to maintain
the reusability and interoperability, more information on the
dependence between the interaction and the characters will be
required for the execution of these interactions.

Acknowledgements
This research was funded in part by the Institute for Robot-

ics and Intelligent System (Networked Centers of Excellence

program of Canada), the Natural Science and Engineering
Council of Canada, the Canadian Foundation for Innovation,
and Fonds pour la Formation de Chercheurs et l'Aide à la
Recherche du Québec. This work is also supported by a post-
graduate scholarship from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).

References

[1] G. Bell, A. Parisi, and M. Pesce, The Virtual Reality Modeling
Language Specification, Available on the Internet at
http://www.web3d.org/VRML2.0/FINAL/ (2001).

[2] Araki, Y., “A Model for Dynamic Interaction between 3D-
Object in Virtual Environment”. In Proc. of Interaction’98,
1998, Tokyo, Japan, pp. 73-80.

[3] Araki, Y., “An Interaction Model for Avatar-Habilis, with
Capabilities to Use Tools in 3D-MUVEs”, In Proc. of the Vir-
tual Worlds and Simulation Conference, 1999, San Francisco,
CA, pp. 39-44.

[4] Broll, W., “Interaction and Behavior Support for Multi-User
Virtual Environments”, In Proc. of the ACM SIVE'95 - First
Workshop on Simulation and Interaction in Virtual Environ-
ments, 1995, Iowa City, IA, pp. 246-264.

[5] Pettifer, S., Cook, J., Marsh, J. and A. West, “DEVA3: Archi-
tecture for a Large Scale Virtual Reality System”, In Proc. of
the ACM Symposium in Virtual Reality Software and Technol-
ogy, 2000, Seoul, Korea, pp. 33-39.

[6] LEE, G. S., “Reusable Interactions for Animation”, In Proc. of
the 5th International Conference of Software Reuse, 1998, Vic-
toria, Canada, pp.320-329.

[7] Poussart, D. Laurendeau, D., Bernier, F., Simoneau, M., Harri-
son, N., Ouellet, D. and C. Moisan, “Designing Virtual Envi-
ronments for Critical Transactions and Collaborative Interven-
tions: the VERTEX Framework for Networked, Physics-
Compliant Object”, SSGRR 2000 Computer & eBusiness Con-
ference, 2000, L'Aquila, Italy.

[8] Booch, G., Object Oriented Design with Applications, Red-
wood City, CA: Benjamin Cummings, 1991.

[9] Winston, M. E., Chaffin, R., and D. Herrmann, “A Taxonomy
of Part-Whole Relations”, Cognitive Science, 1987, 11, pp.
417-444.

[10] Schmidt, D. C., Gokhale, A., Harrison, T. H., and G. A. Parul-
kar, “High-Performance Endsystem Architecture for Real-
Time CORBA”, IEEE Communications Magazine, 1997,
14(2), pp. 72-77.

[11] Buckham, B., Nahon, M., and M. Seto, “Three-Dimensional
Dynamics Simulation of a Towed Underwater Vehicle”, In
Proc. of the 18th International Conference on Offshore Me-
chanics and Artic Engineering, 1999, St. John's, Canada.

[12] Schwartz, J. M., Langelier, E., Moisan, C. and D. Laurendeau,
“Non-Linear Soft Deformations for the Simulation of Percuta-
neous Surgeries”, In Proc. of the 4th International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, 2001, Utrecht, Netherlands, pp. 1271-1272.

[13] Harrison, N., Larose, F., Laurendeau, D. & C. Moisan, “Ther-
mal Mapping with a Neural Network Approach for the Plan-
ning and Conduct of MR Guided Cryosurgeries”, In Proc. of
the 8th Conference of International Society for Magnetic Reso-
nance in Medicine, 2000, Denver, CO, pp 1351.


