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This paper deals with the need for generic software development tools in evolutionary

computations (EC). These tools will be essential for the next generation of evolutionary

algorithms where application designers and researchers will need to mix different com-
binations of traditional EC (e.g. genetic algorithms, genetic programming, evolutionary

strategies, etc.), or to create new variations of these EC, in order to solve complex real

world problems. Six basic principles are proposed to guide the development of such tools.
These principles are then used to evaluate six freely available, widely used EC software

tools. Finally, the design of Open BEAGLE, the framework developed by the authors, is

presented in more detail.
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1. Introduction

In the last fifteen years, Object Oriented (OO) methodologies for software devel-
opment have gained significantly in popularity in the computer world. These ap-
proaches promote code reuse and development by abstraction, thus flexibility and
genericity. In the same years, different nature-inspired optimization techniques have
been unified under a common denomination, Evolutionary Computation (EC). Us-
ing an OO terminology, EC can be seen as an abstract class where the different
specific algorithms (genetic algorithms, evolution strategies, etc.) are the concrete
implementations. The highly diverse and adaptable nature of evolutionary algo-
rithms make EC software tools good candidates for generic OO architecture. But
designing such generic software tools is quite difficult given that most of the software
components must be replaceable or modifiable: representations, fitness measures,
variation and selection operations, evolutionary models, etc. This paper is a study
on genericity in EC software tools, with principles on the development of such tools
and a case-study of a generic EC framework.

The paper is structured as follows. First, a review on the previous works is
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presented. Then, the advantages of using a generic EC software tool in the form
of an OO programmed framework are put forward. Then the different stages in
developing a generic EC framework are discussed, and the six proposed quality
criteria to characterize the genericity of an EC software tool are introduced. An
analysis of some existing EC software tools genericity is presented. The latter part
of the paper is a case-study of Open BEAGLE, the generic EC framework we are
developing. It includes a presentation of the framework architecture, with a special
focus on the genericity mechanisms. Finally, a code example with Open BEAGLE is
shown, illustrating some architectural points of the framework that make it highly
flexible and, at the same time, quite easy to use.

2. Generic EC Software Tools Principles

Traditionally, EC is divided into three categories3: Genetic Algorithms (GA)18, first
developed in the United States in the 1960’s and 1970’s by Holland and his stu-
dentsa, Evolution Strategies (ES)1,36, developed at about the same time in Berlin
by Rechenberg and Schwefel, and finally Evolutionary Programming (EP)1,11, cre-
ated in the United States in the 1960’s by Fogel. This taxonomy is essentially due
to historical and geographical factors, the different scientific communities having
progressed separately until the beginning of the 1990’s.

Given the obvious similarities between these three approaches, it has been pro-
posed to combine them under the unique name “evolutionary computation”. Many
EC conferences and scientific journals have been created during the 1990’s, thus
reducing historical distinctions and facilitating exchange of ideas. This can be illus-
trated by the appearance of agnostic techniques related to the different EC flavors,
for example multiobjective optimization8 or co-evolution2,17. Another predictableb

effect is that in the near future, the GECCOc conference should be structured
around the different field aspects (representations, algorithms, applications, etc.),
not the current historically based EC flavors (GA, GP, etc.).

Despite this important trend toward the unification of EC, most of the spe-
cialists are associated with a particular EC flavor and their scientific and technical
approaches are often influenced by this choice. An example of this is the widespread
use of specialized software implementing one particular EC flavor. But the recent
unification of the domain will probably lead to the common use of generic software
tools not dedicated to any particular EC flavor, allowing the quick development of
new approaches. We think that the use of this kind of software tools is desirable
and should be more widespread in the community in the recent future.

From a software engineering point of view, the development of a really generic

aDespite its distinctive characteristics and its importance, Genetic Programming (GP)4,21 is gen-
erally considered as a GA component according to EC historical taxonomy.
bThis idea was discussed by some researchers present at the GECCO 2003.
cGenetic and Evolutionary Computation COnference, one of the most important scientific confer-
ences on EC.
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EC software tool is complex. In this section, we will analyze this idea and discuss
the problems inherent to the development of a generic EC software tool.

2.1. Previous works

In the middle of the 1990’s, Ribeiro Filho et al.37 presented different existing EC
software tools, with particular emphasis on GA tools. The paper, centered on tech-
nical characteristics, presents an interesting classification of EC tools in three cate-
gories: 1) application-oriented tools, essentially used in particular application con-
texts, 2) algorithm-oriented tools, typically libraries implementing a particular EA,
and 3) toolkits, relatively generic software suites. At about the same time, two
journals published articles10,42 on particular GP systems implementations in C++.
Keith and Martin20 have also made a good analysis on different ways of implement-
ing representation of genetic programs.

In more recent years, several papers on EC software tools have been published.
Papers by Tan et al.43 and MacCallum27 concern specialized EC tools and graphical
user interfaces. Adopting a novice point of view, Wilson et al.49 have made a some-
what superficial analysis of three GP software tools: lil-gp, ECJ, and Grammatical
Evolution. Others13,19,23,28,39,45,46 have presented generic EC software tools archi-
tectures, but they did not discuss the general concepts related to the development
of such tools. The paper by Lenaerts and Manderick25 is of special interest here
since it discusses generic tool development from a global standpoint. The paper
presents the advantages of using and developing an EC framework according to an
OO methodology. The authors expose the problems encountered when using most of
the available libraries, and the advantages that would benefit EC researchers, par-
ticularly in GP field, if they were to use generic and extensible frameworks. They
also make a very interesting presentation of different design patterns15 that can be
applied when designing a GP framework.

2.2. EC Framework

EC can be seen as an abstract class of algorithms, and the different flavors like GP,
GA, and ES can be seen as concrete instantiations of them. An EC instantiation is
achieved by specifying two principal characteristics: the population representation
(data structure), and genetic and natural selection operations (algorithms) used.
This modeling is complex for EC software tool developers because the different as-
pects of an EC instantiation must be uncoupled as much as possible, while allowing
a certain code re-use. Certain types of operations like natural selection operations
can be applied to all representations while others like crossover and mutation opera-
tions are specific to the representation used. Furthermore, the EC field is constantly
progressing and it is not possible to predict new approaches or variations that will
be interesting to implement in the software tool in the future. Thus it is necessary to
include flexible mechanisms in order to avoid important modifications in the tool’s
basic structures. So generic EC software tool development includes many issues.
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From the software engineering point of view the best way of modeling it is in the
form of a framework.

Within the scope of OO programming, a framework is defined by Gamma et
al.15 as: A set of cooperating classes that makes up a reusable design for a specific
class of software. A framework provides architectural guidance by partitioning the
design into abstract classes and defining their responsibilities and collaborations. A
developer customizes the framework to a particular application by subclassing and
composing instances of framework classes.

A common characteristic of all EC flavors is the need to evaluate the fitness of
solutions for a specific problem. Thus it is essential that a part of the architecture
be left empty in order for the user to at least implement the fitness evaluation
operation. On the other hand, depending on the problem to solve, the user can be
interested in different possibilities: to use a standard configuration of a particular
EC flavor, to define his own EA using different standard algorithm components, to
define his own genetic and natural selection operations, or to define a new individual
representation. This is why a good EC software tool must be flexible. But it must
also implement some default standard operations and specify relations between the
different entities of the system.

2.3. Progression of an EC Framework

Roberts and Johnson38 present patterns capturing the essence of frameworks in
different development stages, from a white box framework, where the user has to
define a set of components that inherit (in OO terms) from basic components,
to a black box framework, where most specialized components already exist and
where the user is only required to arrange some components to solve his problem.
A framework progresses generally from the white box to the black box model. A
typical progression starts from the development of a relatively important compo-
nent set forming a library capturing the application field. Application components
are defined by deriving new classes of basic components. During the framework pro-
gression, architecture elements that are changed regularly need to be modeled by
simpler, loosely coupled components. These components must be easy to combine
together without having to define new objects. Also, the number of components in
the framework is generally increasing. The framework reaches the black box model
when it is possible to implement new applications only by connecting existing com-
ponents. Script languages and/or graphical interfaces are then often developed in
order to allow a development environment that does not require thorough knowledge
of the framework internal mechanisms for simple applications.

Development stages of an EC framework are consistent with the progression
model from a white box framework to a black box framework. This progression
often comes with encapsulation of genetic and selection operations in the form of
components that can be connected to form the desired Evolutionary Algorithm
(EA). However, a “pure” black box EC framework is not possible in practice since
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the user must define the fitness evaluation function for his particular problem. This
can be done by defining a new component or using a high-level language script. It is
also possible to provide some fitness evaluation components with the framework, for
a set of classical problems. But in general this approach is not applicable because
fitness evaluation functions are too specific and thus impossible to state in advance.

A black box EC framework combined with a graphical interface allows EC evo-
lutions to be performed without having to master the internal mechanics. But the
expert user can still take advantage of the architecture flexibility to define new
components. Designing such an EC framework requires an important effort to de-
velopers. This is why, to the best of our knowledge, only three really generic, flexible
and user friendly EC frameworks have reached the stage of a black boxd.

2.4. Genericity Criteria

Six criteria are proposed here to qualify the genericity of a framework: generic repre-
sentation, generic fitness, generic operations, generic evolutionary model, parameter
management, and configurable output.

(1) Generic representation: For a personalized EA, it must be possible to de-
fine new individual representations without limitation on the data structures
used. These new representations can be defined using existing representations
as a basis. For example, a standard GA representation can be used as a basis
to define a vector of graph indexes representation in a combinatorial optimiza-
tion problem30. The user can also define unusual representations, for example
graph-based genetic programming44, which is significantly different from clas-
sical tree-based GP representation. It should be possible to reuse some existing
genetic and selection operations with new representations, depending on their
singularity.

(2) Generic fitness: Individual fitness measures should be as independent as pos-
sible from representations and selection operations. It should be possible to
define and use fitness measures that are particular to a given application. For
example, the user may want to change a fitness measure that assigns high val-
ues to good individuals (maximization of fitness) to one that assigns low values
to good individuals (minimization of fitness). This should be possible without
having to recode representations or selection operations. The framework should
also support multiobjective evolution fitness measures in a transparent manner.
Such specifications can be filled by the use of polymorphism. This can be im-
plemented through an abstract representation of the fitness value, that would
include mechanisms to compare two values without knowledge of the concrete
fitness type. Then, it should be possible to define a generic selection operation,
for example tournament selection, based on the abstract comparison mecha-

di.e. ECJ, EO, and Open BEAGLE. They will be presented hereinafter.
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nism. Such a selection operator will work on any kind of fitness value, including
custom ones, as far as the comparison mechanism is defined.

(3) Generic operations: Limitations on the type of genetic and selection op-
erations that can be implemented in the software tool should be minimized.
Operations can be relatively classic, like two-parent crossover, or completely
unusual. Operations should also be relatively independent and have minimal
side effects, in order to use them in conjunction with other operations. When
possible, operations should be independent from representations. This approach
allows development of new operations without altering existing ones. This favors
the creation of a library of components and the development of new EC flavors.
For example, one can imagine a library of components having many variation
operators for a bit string representation (bits inversion mutation, one-point or
two-points crossover, uniform crossover, etc.). For an application based on such
a representation, the user can use one or many of these operators with or with-
out other operators, and he is not constrained with respect to arrangement or
compatibility. Developing good generic operations requires a good design sense
in order to choose the right granularity for our building blocks. A generic op-
erator must be neither too coarse nor too fine. Indeed, a too coarse operator
may limit the flexibility required by the user for rapidly developing new evolu-
tionary models, while a too fine operator may put too much emphasis on the
interactions between operators.

(4) Generic evolutionary model: Genetic and selection operations should be
applied to the population with flexible and configurable algorithms. Thus the
evolutionary model must be as flexible as possible, without a rigid structure.
Ideally, it should be possible to define the model only by connecting operators
together in a given order. For example, in the generational GA case, the EA
can be seen as a successive application of natural selection, crossover and mu-
tation operations on each individual of the population. On the other hand, a
steady-state GA is characterized by natural selection, crossover, and mutation
operations randomly applied to individuals. Each iteration corresponds to the
creation of a new individual in the population, replacing an existing one. Finally
the ES (µ, λ) and (µ + λ) models are an even more complex arrangement of se-
lection, crossover, and mutation operations. It should be possible to introduce
unusual operators in an existing model without having to rewrite it.

The need for a generic evolutionary model thus implies the development
of some-kind of a procedural programming environment for EC. As with most
programming environment, branching and looping statements are necessary to
allow declaration of generic EC models. In the actual case, the branching deci-
sions are generally taken from a set of parameter values, while loops are often
applied on all of the individuals composing a population.

(5) Parameters management: An EC framework often includes a mechanism
that allows the dynamic modification of parameter values (population size, mu-
tation probabilities, etc.) from a configuration file or other user interface. It is
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then desirable that the parameter management mechanism includes only param-
eters relevant to the EA used and allows the easy addition of new parameters for
customized EA. It is also interesting to enable algorithm configuration directly
from a file, without having to recompile a new application.

(6) Configurable output: Output to a file or another user interface must be
configurable. For outputs of the evolution state, each representation, fitness
measure or operation have their own specific information that can be provided
to the user. For example, outputs concerning evolution progression statistics
differ depending on the use of a single or a multi-objective fitness measure.
In GP applications it is also interesting to have statistics about tree sizes and
depths. In a generic tool it should be possible to add new outputs like these
statistics, and the new data in user information outputs or result file outputs
should be harmoniously integrated to the current outputs.

All of these characteristics force the user to understand some mechanisms that
are essential for tool flexibility. Some users are not willing to make this effort so they
prefer monolithic EC library tools that are specialized for a given flavor, these tools
being easier to learn in the short term. This choice becomes expensive when the
users discover the limitations of the library. Then they have to change the library
code in order to modify existing functionalities or to support new ones. Initial
advantages of the library are then lost. Furthermore, addition of components such
as new genetic operations or new representations are practically impossible because
they generally imply that each modification is permanent and irreversible. Thus,
modifications and new functionalities are in competition with those that already
exist. For example, the extension of a GA monolithic library in order to support
multiobjective evolution fitness measures may possibly alter its compatibility with
old applications using single objective fitness measures. Learning to use a generic
EC framework is rewarding in the medium term if the user plans to experiment
with different variations of the EA used.

2.5. Genericity Analysis of Software Tools

Despite the large number of EC software tools, only a few of them are widely used
in the community, and fewer are generic. In order to illustrate the ideas presented
above, six tools will be analyzed in more detail from the genericity point of view:
ECJ26, EO19,29, GAlib48, lil-gp34, GPLAB40,41, and Open BEAGLE14. We have
chosen these tools based on the following criteria: 1) they implement GP, which is an
important and complex EC flavor; 2) they are flexible; 3) they are relatively popular
in the community; and 4) they are interesting for this study, from a programming
language or architectural point of view. Table 1 presents a genericity evaluation of
these tools according to the six criteria of Section 2.4.

ECJe is a generic EC framework coded in Java. It is probably the most popular

ehttp://cs.gmu.edu/˜eclab/projects/ecj
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8 Christian Gagné and Marc Parizeau

Genericity criteria E
C

J
13

E
O

0.
9.

3a

G
A

lib
2.

4.
6

lil
-g

p
1.

1

G
P

L
A

B
2

O
pe

n
B

E
A

G
L
E

2.
2.

0

Generic representation 2 2 2 0 0 2
Generic fitness 2 2 0 0 0 2
Generic operations 2 2 1 2 2 2
Generic evolutionary model 2 2 1 1 1 2
Parameter management 2 2 2 1 2 2
Configurable output 2 1 0 1 0 2

(2 = complete, 1 = partial, 0 = missing)

public EC system coded in Java. It respects all genericity criteria described above. It
has a Java executable that requires only a configuration file and a Java component
with the fitness evaluation function. The configuration file states the ECJ elements
to use in order to form the desired EA as well as the EC parameters. ECJ is coded
in Java, a high-level OO language. This facilitates the programming of new modules
but also requires large resources both in terms of memory and execution time33,
compared to the performance of tools coded in other languages such as C or C++.
ECJ operations can be put together according to a generic evolutionary model,
without having to code any class. ECJ is thus a full black box EC framework.

EOf ,19 is a generic EC framework coded in C++. The objective of its developers
was to make possible an evolutionary process with any type of representation, as
long as an objective quality measure can be defined. EO includes different operators
to initialize and modify the individual representations and the evolutionary process-
ing, as well as integration operators. It also has many utility classes for parameter
management and, to a certain extent, for output configuration. If the user wants a
more complex evolutionary model, he must use integration operators to build his
own evolutionary model. The use of these specialized operators requires a good un-
derstanding of the framework and its components. On the whole, EO is a generic
black box EC framework, but is somewhat difficult to use and master, because of
its complex underlying mechanisms.

Related to EO, EASEAg,9 greatly simplifies the use of a given EC software tool.
It allows the integration of EC specifications in a high-level programming language
and the transformation of these specifications in C++ code that is compilable with

fEvolving Objects, http://eodev.sourceforge.net
gEAsy Specification of Evolutionary Algorithms, http://sourceforge.net/projects/easea
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EO. A graphical interface named GUIDE allows rapid prototyping. EASEA/GUIDE
forms a coherent and interesting software suite to develop a simple application
without having to master internal EO mechanisms. Thus EASEA/GUIDE helps to
hide some complexity related to EO. But from a genericity point of view it is evident
that the EASEA/GUIDE suite induces limitations that make it less interesting to
EO experts.

GAlibh is an EC library coded in C++ that allows the use of generic represen-
tations. Unfortunately, despite the fact that representations are generic, the library
is relatively rigid. First, the fitness measure is fixed to be a scalar. Second, there
are only six precise types of operators: population initialization, fitness evaluation,
individuals selection, termination criterion, two-parents crossover, and mutation.
It is not possible to define operators outside this scope with existing evolutionary
models. One (and only one) operator of each type must be provided to a particu-
lar evolutionary model for a given evolution. The GAlib evolutionary model is not
generic since it is coded directly in a class. Parameters can be dynamically added
to the system but the output is not modifiable. However the evolutionary model
is simplified to some specific algorithms and well defined operations. This makes
GAlib a library that is relatively easy to use and to master for beginners.

The following two software tools are specialized for GP. We will evaluate them
according to the above genericity criteria. lil-gpi is a C language re-implementation
of the GP system little-lisp21. It is widely used in the community and is recognized
as one of the fastest GP systems. Of course the representation of individuals is
fixed to GP trees, but the fitness measure is also limited to the Koza’s GP fitness
measure21. The evolutionary model consists of successive applications of operators
to the population. It is quite generic because there is no restriction on the type of
operators, even though the user is limited to generational algorithms. Parameters
can be added, but the user must provide a routine to analyze the configuration file
and to extract data from these parameters. lil-gp is a typical specialized monolithic
library easy to use if the application stays in the initial scope. But it is difficult to
modify or to extend.

On the other hand, GPLABj,41 is a MATLAB toolbox for GP applications. Like
lil-gp, GPLAB supports only one representation and the fitness measure is limited
to a single real value. The evolutionary model is fixed but the operators composing
this model can be of any type. GPLAB may not satisfy half of the genericity criteria,
but it presents the significant advantage of being built in an environment that can be
considered as a generic framework for scientific programming. Despite the fact that
it is a slow, interpreted language, MATLAB is a high-level development environment
offering a set of incomparable mathematical and graphical functionalities. This is
why the present evaluation of GPLAB’s genericity does not give justice to the tool’s

hhttp://lancet.mit.edu/ga
ihttp://garage.cse.msu.edu/software/lil-gp
jhttp://gplab.sourceforge.net
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qualities.
Finally, Open BEAGLEk is a black box EC framework coded in C++. Except for

the programming language used, Open BEAGLE is similar to ECJ from the point
of view of flexibility and ease of use. It is undoubtedly more generic than GAlib, lil-
gp, and GPLAB. On the other hand, EO includes a variety of mechanisms allowing
for very generic evolutionary models, even though we think that this makes its
use quite complicated. Like ECJ, the evolutionary model of an Open BEAGLE
application can be dynamically modified in the configuration file, without having
to recompile. There are plans to make the generation of configuration files possible
from an application with a graphical interface, much like EASEA/GUIDE.

3. Case-Study: Open BEAGLE

Open BEAGLE is a black box EC framework coded in C++. The recursive acronym
BEAGLE means the Beagle Engine is an Advanced Genetic Learning Environment l.
Beagle is also the name of the English vessel on which the naturalist Charles Dar-
win did his famous world tour. The name Beagle has been used in the 1980’s for
a pattern recognition software developed by Forsyth and based on evolutionary
principles12. The adjective Open has been added to the name of the framework to
distinguish it from Forsyth’s software, and also to insist on the open source aspect of
the project. The project started in 1998 in the form of a GP library coded in C++.
This first prototype has been completely re-written in 1999 in order to resolve some
fundamental problems in the architecture. In the years 2001-2002 the software has
been again re-written from scratch, in order to make it a generic EC framework.
In 2002 Open BEAGLE was publicly launched on the Web14. At the end of year
2003 the development of the framework was moved on SourceForge.netm, which is a
collaborative development Web site offering different services. The framework devel-
opments follow an open source methodology35. Future contributions from external
users will be evaluated and integrated to the framework if they are interesting.

3.1. Open BEAGLE Architecture

The framework architecture follows the OO programming principles, where abstrac-
tions are represented by loosely coupled objects and where it is common and easy
to reuse the code. Open BEAGLE architecture is divided into three different levels
as presented in Figure 1. OO foundations forms the basis as an OO extension of the
C++ and the Standard Template Library (STL). The generic framework is built
on these foundations. It is composed of elements characterizing all types of EC. Fi-
nally, different modules specialize the generic framework by implementing specific
EC flavors.

khttp://beagle.gel.ulaval.ca
lIn French, the acronym means Beagle est un Environnement d’Apprentissage Génétique Logiciel

Évolué.
mhttp://sourceforge.net/projects/beagle
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Fig. 1. Architecture of Open BEAGLE framework.

3.2. Object Oriented Foundations

The OO foundations form the basis of the Open BEAGLE architecture. They are
inspired from design patterns15 and other environments such as the STL32, the Java
library6, and CORBA16.

Open BEAGLE C++ classes are all derived from the same abstract class Object.
This class contains a set of functionalities like a reference counter that, in con-
junction with intelligent pointers, allows for automated management of memory
deallocation such as in high-level OO languages. Open BEAGLE relies heavily on
inheritance by polymorphism. This means that objects must be dynamically instan-
tiated. It is difficult to copy or clone a given object when its exact type is unknown.
This is why allocators have been integrated to the framework. These allocators be-
have like object factories that can allocate, clone, and copy a specific type of object.
A generic object container is also integrated to Open BEAGLE OO foundations.
The container is a dynamic array of Open BEAGLE object pointers and is compat-
ible with the generic container interface of STL. It uses an allocator to instantiate
the contained objects.

Open BEAGLE XML files contain the population representation, parameter
values and evolution results. The way they are read and written is an important
characteristic of an EC framework. The XML (eXtensible Markup Language)5 is
perfect for modeling data since it is flexible, standard, understandable by humans,
and easy to edit. Any XML file format can be transformed into another XML file
format using XSLT (eXtensible Stylesheet Language Transformations)7, as long as
the necessary information is present and correctly tagged. This is important since
it allows backward compatibility for file format changes, the interaction with other
systemsn, the use of XML fileso, and the transformation of XML files to XHTML
files for data visualization in a Web browser. Open BEAGLE includes classes to
read and to write XML that are compatible with standard C++ I/O streams.
Open BEAGLE classes know how to read and write themselves in XML. All this
enables a complete integration of the XML language within the system.

nOne can imagine that it would be easy to develop a tool that convert both EAML files47 and

Open BEAGLE files.
oAnd even some file text formats.
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3.3. Generic EC Framework

The generic EC framework is an extension of the OO foundations. It offers a solid
basis to implement different EC. It is composed of a generic structure of populations,
an evolution system, and a set of operators included in an evolver. All of the generic
EC framework components are integrated together as modules and can be replaced
or specialized independently. This modular design provides a lot of flexibility and
simplifies the implementation of any EC flavor.

In Open BEAGLE populations are structured into four hierarchical levels: vi-
varium, demes, individuals, and genotypes (see Figure 2). The vivarium includes
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Fig. 2. Open BEAGLE generic EC framework.

statistics on the last generation, the hall-of-fame containing the best-of-run individ-
uals, and all individuals present in the evolutionary system. These individuals are
divided into demes24. A deme is a closed environment where a group of individuals
evolves independently. A deme also includes statistics on the last generation and
a hall-of-fame with its best-of-run individuals. At each generation, individuals can
migrate between the demes of a vivarium.

Individuals represent potential solutions to a problem. An individual can be
defined by two types of data: its fitness measure (in a given environment) and one
or more genotypes. The genotype contains the genetic description of an individual.
In the generic EC framework the genotype is an interface that must be specialized
in a specialized framework. For example, the genotype in GP is defined as a tree.
The organization of individuals, genotypes, and fitness measures conforms to the
genericity criteria of generic representation and fitness, as presented in Section 2.4.

The framework also includes an evolution system which is composed of four
components: the context allocator, the register, the logger, and the randomizer (see
Figure 2). The framework context is the present state of the evolving process. It
includes essential data such as the presently processed deme, individual, and geno-
type, as well as the present generation number. For certain EA, a more specialized
context can be defined. For example, a stack associated with the GP tree presently
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processed (a genotype) is added to the context in the specialized GP framework.
The concept of context in Open BEAGLE is similar to the execution context in
computers, which involves register values, counters, and pointers.

Since Open BEAGLE parameters are distributed in many different elements, an
agent named the register is used to centralize information. Parameters are stored
in the register as an association between an identifier and the value held in an
Open BEAGLE object. Elements such as operators can dynamically access these
parameters. The register is also responsible for reading the XML configuration files.
Thus the register implements mechanisms that conform to the genericity criterion
of parameter management.

The logger acts as a user interface, processing all messages generated by the
framework. These messages are associated with a type (architectural entity), a class
(the C++ type of the object at the origin of the message), and a verbosity level. The
logger can also be configured to output only the messages with a verbose level less or
equal to a given value. It is possible to specialize the logger to transmit the output
messages to different entities, for example a graphical interface. The default logger
transmits output messages in XML format to a file and/or the console. Moreover,
the logger can be very practical for application debugging, by using a high verbosity
level. Thus the logger conforms to the specifications of the genericity criterion of a
configurable output, as defined in Section 2.4.

The randomizer can generate random integers or floating point numbers ac-
cording to uniform or Gaussian distributions. The generator’s seed can be set to
an arbitrary value. This value is recorded in the register, allowing for evolution
replication.

Operators and evolvers are central concepts of the framework. The evolving
process as implemented in Open BEAGLE consists in a sequence of operations
that are iteratively applied to the demes of the vivarium. Each genetic operation is
defined as an operator. The evolver has two operator sets: the bootstrap operator set
and the main-loop operator set. The bootstrap operator set is the list of operations
applied to each deme to construct an initial population. The main-loop operator set
is the list of operations to iteratively apply to each deme at each generation, starting
from generation 1. The operators and evolvers model is based on the Strategy design
pattern, for the particular case of EC. Figure 3 presents the Open BEAGLE XML
configuration of a generational GA evolver.

In the bootstrap operator set, the GA-InitBitStrOp operator generates the
initial population, evaluates the fitness with the MyEvalOp operator, and com-
putes statistics on this population with the StatsCalcFitnessSimpleOp oper-
ator. In the main-loop operator set, a tournament selection operation is ap-
plied by the SelectTournamentOp operator, then a one-point crossover op-
erator (GA-CrossoverOnePointBitStrOp) and bit inversion mutation operator
(GA-MutationFlipBitStrOp) are applied. The different operators retrieve their
parameters from the register (e.g. crossover and mutation probabilities). There-
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1 <?xml version="1.0"?>

2 <Beagle>

3 <Evolver>

4 <BootStrapSet>

5 <GA-InitBitStrOp/>

6 <MyEvalOp/>

7 <StatsCalcFitnessSimpleOp/>

8 </BootStrapSet>

9 <MainLoopSet>

10 <SelectTournamentOp/>

11 <GA-CrossoverOnePointBitStrOp/>

12 <GA-MutationFlipBitStrOp/>

13 <MyEvalOp/>

14 <StatsCalcFitnessSimpleOp/>

15 <TermMaxGenOp/>

16 <MilestoneWriteOp/>

17 </MainLoopSet>

18 </Evolver>

19 </Beagle>

Fig. 3. Open BEAGLE XML configuration of a generational bit string GA evolver.

after the fitness evaluation operator (MyEvalOp) and statistics computation oper-
ator (StatsCalcFitnessSimpleOp) are executed. Operator TermMaxGenOp is then
used to check whether the maximum number of generations has been reached, in
which case it sets a flag in the context that will force the evolver to stop at the end
of the main loop. Finally, operator MilestoneWriteOp is used to write at regular
intervals an XML file with the actual evolution state (parameters, evolver, statis-
tics, population). This file can be used to analyze results and even to restart the
evolutionary process.

This evolver and operators model works well in the case of generational EC,
since only one evolutionary process mechanism is necessary at the population level.
However, for other types of EC such as ES or steady-state GA, an evolutionary
mechanism at the individual level is necessary. For this purpose, the breeder model
has been developed. It consists of an extension to the evolver and operators model.
It has two principal architectural elements: the replacement strategies, which are
standard operators present in the bootstrap and main-loop operator sets, and the
breeders operators, which can be connected together as well as to the replacement
strategies to perform evolution at the individual level.

A breeder processing pipeline is a tree structure with a replacement strategy at
the root and breeder operators associated with other nodes. A replacement strategy
calls the breeder operator sub-trees to generate new individuals with its character-
istic algorithm. These calls are generally parametrized by the breeding probabilities
of each sub-tree. New individuals are inserted into the population according to
the specific algorithm of the replacement strategy, hence the name. Each call to a
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breeder operator sub-tree results in the generation of a new bred individual. A non-
terminal node performs an operation on the individuals received from its children,
and then returns the result to its parent. A terminal node consists in either the
selection of an individual in the present population that is returned to its parent,
or the initialization of a new individual.

For example, in the steady-state replacement strategy, a new generation of indi-
viduals is produced by calling its sub-trees as often as there are individuals in the
population (one call = one individual bred). The probability of calling each sub-tree
is given by their breeding probability. Assume that there are three sub-trees, rep-
resenting respectively a crossover, a mutation and a reproduction operation. The
breeding probability of each sub-tree is respectively the crossover, mutation, and
reproduction probability. Figure 4 presents the configuration in XML of such a
steady-state GA evolver.

1 <?xml version="1.0"?>

2 <Beagle>

3 <Evolver>

4 <BootStrapSet>

5 <GA-InitBitStrOp/>

6 <MyEvalOp/>

7 <StatsCalcFitnessSimpleOp/>

8 </BootStrapSet>

9 <MainLoopSet>

10 <SteadyStateOp>

11 <MyEvalOp>

12 <GA-CrossoverOnePointBitStrOp matingpb="ga.cx1p.prob">

13 <SelectTournamentOp/>

14 <SelectTournamentOp/>

15 </GA-CrossoverOnePointBitStrOp>

16 </MyEvalOp>

17 <MyEvalOp>

18 <GA-MutationFlipBitStrOp mutationpb="ga.mutflip.indpb">

19 <SelectTournamentOp/>

20 </GA-MutationFlipBitStrOp>

21 </MyEvalOp>

22 <SelectTournamentOp repropb="ec.repro.prob"/>

23 </SteadyStateOp>

24 <StatsCalcFitnessSimpleOp/>

25 <TermMaxGenOp/>

26 <MilestoneWriteOp/>

27 </MainLoopSet>

28 </Evolver>

29 </Beagle>

Fig. 4. Open BEAGLE XML configuration of a steady-state bit string GA evolver.

The evaluation operator is located at the root of the crossover and mutation
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sub-trees as new individuals generated in a steady-state algorithm must have a
valid fitness before being integrated in the population. This is not necessary for the
reproduction sub-tree, which is composed of only the selection operator of line 22
in Figure 4. The selection operator generates individuals that are copies of existing
individuals for which the fitness is already valid. In general, the operators used
by generational and steady-state evolvers are the same. However, they function
in different modes of operation: they process either a single individual in breeder
mode, or a complete deme in generational mode. These two modes of operation are
controlled through calls to distinct methods.

The concepts of evolver, operators, and breeder conform to the generic operators
and the generic evolutionary model criteria presented in Section 2.4. Also, these are
generic mechanisms for component arrangement that are mostly responsible for the
Open BEAGLE’s black-box development stage.

3.4. Specialized Frameworks

Specialized frameworks are built upon the generic framework. Three specific frame-
works are actually implemented: linear representation framework with a support for
bit string representations, real-value vectors and ES (xi, σi) pairs vectors; a tree-
based GP framework; and a co-evolution framework for the simultaneous evolution
of several species. The user can implement its own EC flavor, from an existing
specialized framework or directly from the generic EC framework.

The linear representation EC framework, also called the GA framework, is quite
simple. For each of the three representations implemented, it defines a specific geno-
type and includes initialization operators, three generic crossover operators (one-
point, two-points, and uniform crossover) as well as specific mutation operators
(bit inversion, real-value mutation, and ES adaptative mutation). The specialized
framework also includes functionalities allowing the transformation of a bit string
into a real number vector.

The GP specialized framework is more complex. New mechanisms specific to
the paradigm have been defined. To genetically program a computer, two specific
points relative to the problem field must be established. The first point is the datum
type, that is the data (variables) type that will be managed by genetic programs.
Once the datum is defined, the user needs to specify the primitives that will be
used to build GP individuals. A primitive is an operation associated with the nodes
of the GP tree. It is specific to the application. It corresponds to terminals and to
functions used in an application, as described by Koza21. Primitives process and
return variables of the datum type used.

In Open BEAGLE the datum type must be derived from the root class Object.
This can be done by using an Open BEAGLE predefined type or by adapting
a foreign type to the class interface. To create a primitive that can be used in
GP trees, the user must define a concrete class derived from the abstract class
of primitives, where a pure virtual function must be overdefined to implement the
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Primitive Super Set
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/
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Fig. 5. Relation between primitive sets and GP trees.

specific operation of the primitive. The interface of the primitive class allows the use
of advanced GP functionalities such as strongly-typed GP31 and ephemeral random
constants21.

The primitives used in a given application must be inserted in the set of usable
primitives. GP trees are generated from the primitives of this set. The super-set
of primitives is an extension of the evolution system including one or more sets of
primitives. The number of trees (genotypes) of GP individuals is determined by the
number of sets in the super-set, as illustrated in Figure 5. Among other things, this
mechanism allows the implementation of automatically defined functions21,22.

Finally, the co-evolution framework2,17 is different from the other two because
it does not implement a new representation. It rather implements mechanisms for
evolving simultaneously many species of individuals. This framework is based on
concurrent programming, where each thread evolves one species. The co-evolution
framework defines a fitness evaluation operator allowing the matching of individuals
from different species (threads). Otherwise, individuals are evolved using standard
mechanisms defined in the other specialized frameworks, or by the user.

3.5. Code Example: OneMax

Despite the inherent complexity of a generic EC framework, the use of Open BEA-
GLE is relatively simple for a novice programmer. The components have default
values and policies that are suitable for most simple applications. The user is only
required to define a fitness evaluation operator and a main method that initializes
different components. Figure 6 presents an evaluation operator implementation for
the classical GA bit string example OneMax. The problem consists in searching for
bit strings that have a maximum number of bits set to “1”. The corresponding main
routine is presented in Figure 7.

Line 5 in Figure 6 constructs a fitness operator named OneMaxEvalOp. Lines 6
to 15 corresponds to the function called to evaluate an individual fitness. Lines 9
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1 #include "beagle/GA.hpp"

2 using namespace Beagle;

3 class OneMaxEvalOp : public EvaluationOp {

4 public:

5 OneMaxEvalOp() : EvaluationOp("OneMaxEvalOp") { }

6 virtual Fitness::Handle evaluate(Individual& inIndividual,

7 Context& ioContext)

8 {

9 GA::BitString::Handle lBitString =

10 castHandleT<GA::BitString>(inIndividual[0]);

11 unsigned int lCount = 0;

12 for(unsigned int i=0; i<lBitString->size(); ++i)

13 if((*lBitString)[i]) ++lCount;

14 return new FitnessSimple(float(lCount));

15 }

16 };

Fig. 6. Fitness evaluation operator for the OneMax problem.

1 #include <cstdlib>

2 #include <iostream>

3 #include "beagle/GA.hpp"

4 #include "OneMaxEvalOp.hpp"

5 using namespace Beagle;

6 int main(int argc, char** argv) {

7 try {

8 GA::BitString::Alloc::Handle lBSAlloc = new GA::BitString::Alloc;

9 Vivarium::Handle lVivarium = new Vivarium(lBSAlloc);

10 OneMaxEvalOp::Handle lEvalOp = new OneMaxEvalOp;

11 const unsigned int lNumberOfBits = 20;

12 GA::EvolverBitString lEvolver(lEvalOp, lNumberOfBits);

13 System::Handle lSystem = new System;

14 lEvolver.initialize(lSystem, argc, argv);

15 lEvolver.evolve(lVivarium);

16 }

17 catch(Exception& inException) {

18 inException.terminate(std::cerr);

19 }

20 return 0;

21 }

Fig. 7. Main routine for the OneMax problem.

and 10 cast the generic individual to evaluate into a bit string individual. Lines 11
to 13 count the number of ones in the bit string while line 14 returns the fitness
measure, that is a single real value to maximize.

For the main routine of the application presented in Figure 7, lines 8 and 9
build a bit string population. Line 10 instantiates the fitness evaluation operator
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defined above. Lines 11 and 12 define a bit string GA evolver where individuals
are initialized as a string of 20 bits each. Line 13 creates the evolution system as
defined in Figure 5. Line 14 initializes the evolver and the evolution system, parses
the command line, and reads configuration files. A generational GA similar to the
one in Figure 3 is used by default. If the user wants to use a steady-state GA, for
example, he must define a XML configuration file similar to the one in Figure 4p and
execute the program with an option on the command line referring to the proper
configuration file. Finally, the evolution is launched at line 15. The entire routine
is in a try-catch block in order to intercept exceptions which may be thrown by
Open BEAGLE, if a problem is detected at runtime. This example, as well as many
others, are packaged together with the source code of Open BEAGLE.

4. Conclusion

Current and future needs of EC researchers include generic software tools that en-
able the rapid development of new paradigms or a mixture of old and new ones.
Historical distinctions between genetic algorithms, genetic programming, evolution
strategies, etc., are becoming less and less relevant, as not one of them is best suited
for solving every possible problem. Different sub-problems may require different rep-
resentations and/or different evolutionary models and heuristics. Different species
of solutions may need to co-evolve. Some optimization problems may intrinsically
involve multiple objectives. In order to develop prototypes of complex EC solutions
that integrate all of these paradigms (and others), well-designed tools must promote
code reuse and adaptability.

In this paper, six fundamental criteria were proposed to evaluate the genericity
of existing EC frameworks, or guide the development of new ones: 1) possibility
of replacing the internal representation of individuals, including the possibility of
multiple representations; 2) possibility of replacing the fitness measure; 3) ability to
define or add any type of operator; 4) capacity of changing the evolutionary model
in order to enable different evolutionary algorithms; 5) capacity of dynamically
changing any parameter, as well as adding or removing them, especially those of
operators; and 6) availability of flexible output mechanisms to enable the periodical
safeguard of the evolution state, and the retrieval of different types of statistics for
its monitoring and control. These criteria have been used to evaluate six well-known
and freely available EC frameworks. According to these criteria, results have shown
that at most three of them can support a claim for a reasonable level of genericity.

One of these generic frameworks is Open BEAGLE which has been designed and
implemented by the authors over a six year period. Its current release is in fact a
third complete rewrite and re-design. The principles presented here stem from this
experience. Through a case study of Open BEAGLE, we have also shown how the
genericity principles can be instantiated in a concrete object oriented design.

pTaking care to replace MyEvalOp tags by OneMaxEvalOp tags.
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