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Abstract— This paper introduces a new mathematical model
of the master-slave architecture for distributed Evolutionary
Computations (EC). This model is validated using a concrete
implementation based on the Distributed BEAGLE C++ frame-
work. Results show that contrary to (current) popular belief,
master-slave architectures are able to scale well over LANs of
workstations using off-the-shelf networking equipment. The main
properties of the master-slave are also compared with those of
the more mainstream island-model.

Index Terms— Master-Slave Architecture, Evolutionary Com-
putations, Distributed BEAGLE.

I. INTRODUCTION

The generic problem-solving abilities of Evolutionary Com-
putations (EC) are now well established [1], [2], [3]. These
abilities, however, come at a high computational cost. Under
the assumption that fitness evaluation time is high for “real-
world” EC problems, the aim of this paper is to show that
a master-slave architecture can be designed to efficiently
distribute the computation load over a Local Area Network
(LAN) of dedicated workstations (the so-called Beowulf clus-
ter). It will be shown that this architecture can be made
both robust and efficient, as well as adaptive to provide load
balancing in a dynamic environment. Moreover, through a
realistic mathematical model, it will also be shown experi-
mentally and theoretically that the proposed architecture can
scale well over a large number of processors using off-the-
shelf networking equipment. Called Distributed BEAGLE, the
developed distributed EC system is integrated transparently
with the C++ Open BEAGLE framework [4].

The recent availability of cheap Beowulf clusters has gen-
erated much interest for Parallel and Distributed Evolutionary
Computations (PDEC) [5], [6]. Four main types of PDEC
can be defined: master-slave with one population, island-
model made of several distinct populations, fine-grained, and
hierarchical hybrids. The basic master-slave PDEC uses one
processor (the master) to manage the population and apply
evolutionary operators (selection, crossover, and mutation),
and a set of slave processors to distribute the fitness evaluation
task. An island-model PDEC consists in evolving isolated
sub-populations (sometimes called “demes”), one on each
processor, while occasionally exchanging individuals between
islands in a migration process. The so-called fine-grained
PDEC consists in evolving populations spatially distributed
on processors, generally using a rectangular matrix. This class
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of PDEC is particularly adapted to massively parallel SIMD
(Single Instruction Multiple Data) computers and is now rarely
used in the EC community. Finally, hierarchical hybrids use
a hybrid approach between master-slave (or fine-grained) and
island-model, in order to exploit positive aspects from both
paradigms. In this paper, we concentrate on the master-slave
paradigm, even though we do compare the properties of the
master-slave and island-model in the next section, in order to
emphasize their respective merits.

In the last few years, several freely available PDEC sys-
tems have emerged on the Internet, such as DREAM, ECJ,
ParadisEO, JDEAL, GALOPPS, or Paladin-DEC (some of
them may not be actively supported or updated). DREAM
(Distributed Resource Evolutionary Algorithm Machine) [7],
[8], [9] is a peer-to-peer system based on the island-model.
In DREAM, each node evolves its own population. Nodes
can discover the complete network through a “push-pull anti-
entropy epidemic” algorithm. The DREAM system is targeted
toward Wide Area Networks (WAN) where communication
costs are high. It assumes an application which is massively
parallelizable, asynchronous and robust (i.e. its success does
not depend on the success of any sub-process), that requires
little communication between sub-processes, and has large
resource requirements. ECJ [10] is a generic EC Java-based
framework that includes some PDEC components using Java
TCP/IP sockets. Distribution components of ECJ allow both
the island-model and the master-slave strategies. ECJ’s distri-
bution features are not as sophisticated as DREAM, but they
are sufficient for exploiting the computer resources of a Local
Area Network (LAN). ParadisEO (PARAllel and DIStributed
Evolving Objects) [11] can also be used for both island-model
and master-slave configurations. Although it is designed as an
extension of the Evolving Object (EO) framework, it is not
limited to EC as it can also perform local search algorithms.
The framework is coded in C++ using MPI/PVM for message
passing and the pthread library for multi-threading. JDEAL
(Java Distributed Evolutionary Algorithms Library) [12] is a
master-slave architecture coded in Java. It integrates its own
implementation of genetic algorithms and evolution strategies.
GALOPPS (Genetic ALgorithm Optimized for Portability and
Parallelism System) [13] is a C implementation of the island-
model, tightly linked with the S − GA genetic algorithms
library. Paladin-DEC [14] is another Java implementation of
the island-model. It integrates its own version of genetic
algorithms, genetic programming, and evolution strategies,
with dynamic load balancing and fault tolerance.

Although most of these systems seem fine on paper, it is
interesting to note that their authors have reported speedup
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performances only for modest numbers of processors. Indeed,
most results are given for fewer than 10 processors. For
instance, in the island-model category, the authors of DREAM
report a speedup of 86% for 9 processors. They also report
some results for experiments with 20 processors where some
simulate crashes. Even though the island-model PDEC should
in theory be able to scale up very well, it is tempting to
conclude from this lack of large scale results that it is not
so easy to exploit in practice, essentially because hard EC
problems (those that require distributed solutions) tend to need
small numbers of large sub-populations more often than large
numbers of small ones [15]. In the master-slave category,
the authors of Paladin-DEC report a speedup of 67% for 5
processors while the authors of ParadisEO report a speedup
of 83% for 40 processors (this is the exception to the fewer
than 10 processors rule). At this point, even though an intrin-
sic architectural bottleneck exists when the master becomes
overwhelmed by slave requests and communication overheads,
we argue that the master-slave architecture is capable of
scaling up well with hundreds of processors (using yesterday’s
computers and networks), if not for thousands of processors
(using today’s technology), depending on how hard the fitness
is to evaluate relative to the communication overheads, for
real-world applications.

We should mention also that in the late 1990’s and early
2000’s, two Beowulf clusters of respectively 70 and 1000
nodes were built by Koza especially for PDEC [16], [17],
using off-the-shelf components. These clusters were used to
publish many research papers, but the software used to run
them was never made public nor described in detail. It is
however of the island-model type. Typically, the later cluster
was used to evolve 1000 demes of 10 000 genetic programs
in parallel (genetic programming is known to perform best
with very large populations). It appears that speedups of about
100% were achieved in this context (because communications
between adjacent cluster nodes are sparse), although we could
not find explicit numbers in Koza’s vast body of literature.

An initial version of the work presented hereafter was
first published as a late breaking paper at the GECCO 2003
conference [18], but without any experimental results. Since
then, work was completed on our software implementation,
the mathematical model of the master-slave architecture was
completely revised, and thorough experiments were conducted.
The rest of the paper is structured as follows. In Section II, the
properties of the master-slave and island-model are compared
more precisely in order to put their respective merits into
perspective. Then, Section III presents the mathematical model
of the master-slave proposed for speedup evaluation. This
model can be used to predict the speedup of any configuration
given the number of processor slaves, the (effective) network
throughput and latency, the average time for evaluating the
fitness of an individual, and the average time for marshalling
an individual and its fitness value. Results are reported in
Section IV, both theoretical and experimental. They show that
the proposed model is realistic enough to enable extrapolation.
Finally, a brief overview of the system implementation is given
in Section V, before drawing conclusions in Section VI.

II. MASTER-SLAVE VS ISLAND-MODEL

The island-model is the PDEC architecture that currently
receives the most attention in the EC community [8], [19]
for the following reasons: 1) it scales up well as each node
communicates only infrequently with its neighbors; 2) the
approach is robust as there is no centralized control or data; 3)
the communications are asynchronous and limited to punctual
migration of small sets of individuals; and 4) there is an
implicit use of populations with multiple demes.

But the island-model also has several limitations: 1) pop-
ulation sizes must be tuned to balance computational load
of nodes; 2) evolutions cannot be reproduced as migration
is asynchronous and depends on the state of the proces-
sors/network; 3) distribution of results among nodes com-
plicates data collection and analysis; 4) the method is not
particularly adapted to networks of heterogeneous computers
where availability of nodes is limited in time; and 5) when a
node crashes, a part of the global population does not evolve
and may even be lost.

On the other hand, the master-slave has also been used
by the EC community for the following reasons: 1) it is
a simple transposition of the single processor evolutionary
algorithm onto multiple processor architectures that allows
reproducibility of results; 2) there is no permanent loss of
information when a slave fails or is unreachable by the
master; 3) it is appropriate for networks of computers where
availability is sometimes limited (e.g. available only during
night time or when a screen saver is on) as nodes can be
added or removed dynamically with no loss of information;
and 4) it is made of a centralized repository of the population
which simplifies data collection and analysis.

But the master-slave also has limitations that restrict their
usability under some circumstances: 1) it may not scale up as
well when the master is overloaded or when population size
becomes very high; 2) a crash of the master node can paralyze
the whole evolution; 3) there is significant communication
cost associated with transmission of all individuals through the
network; and 4) there is synchronization overhead when some
slave nodes are lagging, assuming a generational evolutionary
algorithm.

As mentioned previously, most papers that measure speedup
improvement almost always use fewer than ten processors (or
ten subpopulations) as in [14], [15], and [20]. A minority of
researchers need more subpopulations. Few ever use more than
25 processors [11]. Considering the time needed to process
large populations or complex fitness evaluation functions,
increasing the number of processors is vital. Proving that one
architecture scales up well to 10 processors does not prove
that it can scale up for 100 processors or more. Also, if there
is a possibility that the island-model can produce super-linear
speedups induced by the migration process [5], it should be
noted that this feature can be easily simulated in a master-slave
environment.

In light of these arguments, we strongly believe that a
master-slave architecture for PDEC is appropriate for Beowulf
clusters or LANs of workstations which are commonly avail-
able to EC researchers within their institutions. Moreover,
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in the context of heterogeneous and/or partial availability of
resources, for example when using networks of workstations
during night time and week-ends, or in the context of very low
priority time-sharing, using a master-slave is more natural and
efficient than a classical island-model PDEC. The classical
island-model is not designed to deal with these features, es-
sentially because populations (demes) are tightly coupled with
processing nodes. In contrast, the master-slave model has all
of the required features. One issue that needs to be addressed,
however, is its ability to scale up with a large number of slave
nodes, knowing that there exists a communication bottleneck
with the master node.

III. MASTER-SLAVE MODEL

Recent literature on mathematical models for master-slave
PDECs is somewhat sparse. The most important is the book
from Cantú-Paz [5] which covers many aspects of PDECs.
In particular for the master-slave, it defines a simple model
based on the p-slaves-p-sets policy, where the individuals of
a given generation are separated into p sets of equal size, and
dispatched to p slaves for fitness evaluation.

The speedup of such a system can be computed using the
following simple formula.

speedup =
Ts

Tp
, (1)

where Ts is the time needed to evolve a population of
individuals on a single processor (serial computer), and Tp

is the time needed to evolve the same population in parallel,
using p slave processors (parallel computer). Time Ts is given
by:

Ts = n[te + tf ], (2)

where n is the population size, te is the average time required
for applying selection and genetic operations per individual
(to evolve one individual), and tf is the average time needed
to evaluate its fitness.

According to Cantú-Paz, time Tp can be approximated by:

Tp = n te + ptc +
ntf
p

, (3)

where tc is the communication time needed for transmitting
a set of individuals to one slave. Term ptc thus represents
the time required to send the p sets to the p slaves, while
term ntf/p is the time required by the last slave to evaluate
the fitness of its n/p individuals. Using this model he then
computes the optimal number of slaves, that is the point
at which the increase in communication time surpasses the
decrease of fitness evaluation time. But this model neglects the
possibility of parallelism between the master and the slaves.
Equation (3) assumes that the master cannot do anything
else while sending sets of individuals to slaves, and that
slaves need to receive their complete set of individuals before
starting their fitness evaluation task. In fact, if we consider
multiple communication cycles between master and slaves,
where smaller sets of individuals are sent for each cycle, then
we can show that there exists an optimal number of cycles.

Assuming tf is large enough, (3) can be re-written as
follows with α designating the number of server cycles:

Tp = n te +
(p− 1) tc

α
+

α∑
1

[
tc
α

+
n tf
αp

]
= n te +

(p− 1) tc
α

+ tc +
n tf
p

. (4)

Equations (3) and (4) are equivalent when α = 1. When
α > 1, (4) specifies that the first cycle is the most costly
because some work needs to be assigned to the first p−1 slaves
before the last slave is able to start its own work. Thereafter
(during subsequent cycles), the tf large assumption implies
that the master will be able to provide more work to slaves
without delay. Otherwise, either the master or the network
would be overwhelmed. Thus, the global fitness evaluation
task completes when the last slave completes its part of the
workload (i.e. after tc + n tf/p).

By setting ∂Tp/∂α = 0 and solving for α, we obtain
α →∞ which means that individuals should be sent to slaves
one by one. Of course, this assumes that there is no latency
in communications. By adding a latency term tl in (4), Tp

becomes:

Tp = n te +
(p− 1) tc

α
+ (α + p− 1) tl + tc +

n tf
p

, (5)

where p latencies are introduced by the first cycle (slave
requests are synchronous), and α − 1 by subsequent cycles
(assuming tc < tf ). Equation (5) can be optimized by:

α =

√
(p− 1) tc

tl
. (6)

This result demonstrates that the p-sets-p-slaves policy devel-
oped by Cantú-Paz is not optimal. It shows that the number
of communication cycles should be proportional to both the
number of slaves (p) and the communication time (tc), and
inversely proportional to latency (tl).

The model proposed in this paper takes a different approach.
First, its formulation is recursive in order to take into account
non linear delays. Second, it introduces new time parameters
to represent marshalling and unmarshalling of individuals.
These variables introduce latencies that are somewhat different
in nature than network latencies that are mostly I/O bound.
Network latencies allow some parallelism whereas marshalling
latencies are CPU bound. Moreover, they may or may not be
negligible depending on the type of EC. For example, genetic
programming may induce important marshalling latencies. We
also distinguish the mean transmission time needed for sending
one individual over the network (txi) and for receiving its
fitness evaluation (txf ). It is further assumed that the master-
slave architecture follows a server-client paradigm where con-
nections are closed after each request. A slave (client) connects
to the master (server) to request work; and the master responds
by sending a set of µ individuals that need fitness evaluation.
The slave then processes these individuals and reconnects to
the master to both return the computed fitness values and
request more work.

The marshalling process consists in converting the internal
representation of an object into a stream of data for sending
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Fig. 1. Sequence diagram for the proposed master-slave model: step 1
requires time n[tui+tuf +te+tmi]; step 2 is ntui; step 3 is tl+µ[tmi+txi];
step 4 is µ[tui + tf ]; step 5 is tl + µ[tmf + txf ]; step 6 is µtuf ; and step
7 is n[tmi + tmf ].

them over a network. The unmarshalling process is the reverse
operation. The times required to marshal and unmarshal indi-
viduals will be denoted by tmi and tui, while those of the
fitness values will be written tmf and tuf .

The sequence diagram of Figure 1 illustrates the proposed
model which is constructed around three process types: an
evolver slave, a master server, and a set of evaluator slaves.
The evolver is responsible for applying the selection and
genetic operators while the evaluators are used exclusively for
computing fitness. The server is application independent. Its
role is to coordinate the work of the evolver and evaluators.
The evolver and server processes are assumed to run on the
same machine but this is not a limitation.

At the start of a generation, the system is at position 1 (see
Figure 1). The evolver unmarshals the individuals (and their
fitness values) received from the server, applies selection and
genetic operators, and re-marshals the new individuals to send
them through the loopback network interface. This requires
n[tui + tuf + te + tmi] units of time. The server, now at
position 2, receives the individuals and unmarshals them in
time ntui. When an evaluator slave connects at position 3, the
server transmits a set of µ individuals in time tl +µ[tmi +txi].
The evaluator at position 4 unmarshals the individuals and
computes their fitness in time µ[tui + tf ]. The evaluator then
reconnects at position 5, marshals the computed fitness values,
and sends them back to the server in time tl+µ[tmf +txf ]. The
server at position 6 now unmarshals the received fitness values
in time µtuf and loops to step 3 until every individual has been
processed. When complete, the server marshals all individuals
and their fitness values, and sends them to the evolver in time
n[tmi + tmf ] at step 7. The evolver now restarts at position 1.

In the following equations, let µ represent the desired size
of sets for evaluator slaves, and dn/µe ≥ p, let T1(i) denote
the time point at which the server completes everything that
it needs to do before slave i mod p can begin processing its
di/pe cycle (dxe specifies the smallest integer greater or equal
to x), and let T2(i) denote the time point at which slave i mod

p ends its di/pe cycle. Then, time Tp can be expressed as
follows:

Tp = max
j=1...p

[
T2

(⌈
n

µ

⌉
− j + 1

)
+ m

(⌈
n

µ

⌉
− j + 1

)
tuf

]
+ n[tmi + tmf ], (7)

where:
m(i) =

{
µ i ≤ bn/µc
n mod µ otherwise (8)

is equal to µ except for the last slave of the last cycle which
receives fewer individuals if n is not a multiple of µ.

The time to complete one generation is the end time of the
slowest slave of the last cycle, plus the time to unmarshal
the results, and the time needed by the server to return the
evaluated population to the evolver (i.e. n[tmi + tmf ]). Time
T2 itself can be expressed by the following formula:

T2(i) = T1(i) + m(i)[tui + tf + tmf + txf ] + tl (9)

T1(1) = n[tui + tuf + te + tmi + tui]+ tl +µ[tmi + txi] (10)

T1(i) = tl + m(i)[tmi + txi]

+


T1(i− 1) 1 < i ≤ p

max
[
T1(i− 1),
T2(i− p)

]
+ µtuf otherwise

(11)

For the special case of the first evaluator slave of the first cycle
(Eq. 10), before it can start processing individuals, it must wait
for the evolver to complete its work (in time n[tui + tuf +
te + tmi + tui]), it must wait for the server to establish a
connection (in time tl), and it must wait for the server to send
the individuals themselves after they have been marshalled
and transmitted through the network (in time µ[tmi + txi]). In
the general case of (11), only the latter two tasks need to be
accomplished. The server must establish a connection (in time
tl) and transmit the individuals in time m(i)[tmi+txi]. To this
delay, we need to add one of two possible additional delays.
The first delay is during the first cycle. In that case, we simply
add the time required by the master to serve the previous slave
(i.e. T1(i − 1)). The second possible delay is for subsequent
cycles. In that case (i.e. i > p), the slave must wait for either
the start time of the previous slave (i.e. T1(i− 1)) or its own
end time for the previous cycle (i.e. T2(i−p)), and the server
must eventually unmarshal the fitness values returned by the
slave for the previous cycle (in time µtuf ).

IV. THEORETICAL AND EXPERIMENTAL RESULTS

Using the proposed mathematical model, we can now in-
vestigate the following realistic scenario. Consider a Beowulf
cluster made of homogeneous computers and a 100 Mbits/sec
Ethernet switch. Assume a population of n = 100 000 in-
dividuals (total) is evolved, where fitness evaluation requires
tf = 0.25 sec/individual on average. Let the average length of
(marshalled) individuals be 150 bytes and their fitness require
50 bytes, which corresponds to about txi = 4.54 × 10−5 sec
and txf = 1.52 × 10−5 sec assuming an effective network
bandwidth of ≈ 3.3 MBytes/sec. The times to marshal and
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unmarshal individuals are tmi = 9.5 × 10−6 sec and tui =
9.6×10−5 sec while the times to marshal and unmarshal fitness
values are tmf = 6.5× 10−6 sec and tuf = 6.45× 10−5 sec.
Finally, let the average latency per connection be tl = 0.001
sec. Note that these values are realistic since they have been
estimated from our experimental setup (described below).

Given these values, Figure 2a presents the theoretical (pre-
dicted) speedup curves for three values of µ that correspond
respectively to 1, 10, and 100 server cycles per generation
(µ = {dn/pe, dn/10pe, dn/100pe}). Figure 2b gives the same
speedup curves but this time using the Distributed BEAGLE
environment (see Section V for more information). These
experimental curves are average speedups for three indepen-
dent simulation runs. They were obtained using a Beowulf
cluster of 24 AMD Athlon 1.2GHz nodes running a special
GA application where the fitness evaluation function does
nothing except to unmarshal the individuals, sleep for m(i)tf
seconds, marshall random fitness values, and return these to
the master. This way, we are able to run many evaluator slaves
on each cluster node without taxing its CPU too much (for
p = 1000, we run up to 42 processes on each node; the CPU
load never rose above 25%). Because we evaluate the speedup
over a single generation, it is independent of whether slaves
are actually crunching numbers or simply sleeping, it only
depends on the time that they take to return their response. To
make a more realistic simulation, we have also tried a random
evaluation time using a Gaussian distribution N(tf , tf/3),
instead of the default N(tf , 0). Speedup results are mostly
unchanged within a ±3% margin.

As can be seen from Figure 2, the predicted speedups
fit very nicely with the observed experimental speedups, up
to about 500 processors at which point the server becomes
overwhelmed. This bottleneck occurs sooner than predicted
essentially because the server needs to accomplish certain
bookkeeping tasks that are not currently modelled. As for the
100 cycles curve, it is interesting to note that with more than
500 processors, some of them will not receive more than 1
individual per cycle. When more than 1000 processors are
used, they will receive either 1 or 0 individual, which explains
the flat part of the curve in Figure 2a.

Even though differences are small for the chosen parameter
combination, this figure also illustrates that using the µ = n/p
policy (1 cycle) may not be optimal depending on scale,
latency, transmission time, and fitness evaluation time. Figure
2c shows that fitness evaluation time can affect performance
greatly for this configuration when using 100 processors. At
tf = 0.01 sec, speedup is around 14% of the optimal (for
10 cycles), while it reaches almost 95% for tf = 1 sec.
Moreover, a very small fitness evaluation time tends to favor an
intermediate number of server cycles, while a large evaluation
time makes less difference. Figure 2d shows that the predicted
speedups for 100 processors fit the experimental results very
well.

The effect of latency is shown in Figure 2e, again for
100 processors. Latency tends to inhibit scalability when it
becomes large. Moreover, it clearly tends to favor a lower
number of cycles. The effect of transmission time is also
to reduce scalability, as shown in Figure 2f, but a higher
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Fig. 3. Experimental speedup curves for 1, 10, and 100 server cycles
in the presence of a single soft failure. Other parameters are the same
as those of Figure 2.

transmission time tends to favor a higher number of cycles.
Previously, it was assumed that slave processors would

always provide a fitness evaluation value for all individuals
that they receive. This might be realistic in the context of
a dedicated Beowulf cluster, but it becomes a very strong
assumption in the context of a LAN of multipurpose worksta-
tions that might become unavailable sporadically. Two types
of failures can be considered here: soft failures where a slave
returns only a subset of answers, indicating to the server that
it must now sign-off (for whatever reason), and hard failures
where it returns no answer, never reconnects, or reconnects
as a new slave (i.e. because of network problems, system
crash or reboot, etc.). Figure 3 gives speedup curves for the
case of a single soft failure where the faulting slave sends
a sign-off message to the server after evaluating 50% of its
individuals. He then exits and the simulation continues with
p − 1 slaves. These curves show that a single server cycle
is a very bad policy in the presence of failures, because it
essentially increases the number of cycles by one which can be
equivalent to doubling the execution time. In this case, it adds
half of a cycle for one slave, which can amount to a 33% drop
in speedup. In practice, using 100 slave processors, we observe
a drop from 81% to 59% for µ = n/p. Using µ = n/100p, the
drop is only from 83% to 82%, approximately. Hard failure
results are not given here, but conclusions are mostly the same,
only with worse speedup curves.

V. SYSTEM DESIGN

This section presents a quick overview of Distributed BEA-
GLE1, our implementation of the master-slave architecture,
which was used to validate the proposed mathematical model.
This system is mostly a transparent extension of the Open
BEAGLE C++ EC framework [4], which allows both the de-
velopment of new EC flavors, using a generic layer of abstract
classes, and the rapid deployment of classic paradigms like
genetic algorithms, genetic programming, and evolutionary

1http://beagle.gel.ulaval.ca/distributed

http://beagle.gel.ulaval.ca/distributed
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Fig. 2. Speedup curves for 1, 10, and 100 server cycles (µ = {dn/pe, dn/10pe, dn/100pe}): (a) theoretical effect of p; (b) experimental
effect of p; (c) theoretical effect of tf (100 slaves); (d) experimental effect of tf (100 slaves); (e) theoretical effect of tl (100 slaves);
(f) theoretical effect of txi (100 slaves). Other parameters are n = 100 000, tf = 0.25 s, txi = 4.54 × 10−5 s, txf = 1.52 × 10−5 s,
tmi = 9.5 × 10−6 s, tui = 9.6 × 10−5 s, tmf = 6.5 × 10−6 s, tuf = 6.45 × 10−5 s and tl = 0.001 s.
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Fig. 4. Distributed BEAGLE is a client/server Architecture.

strategies, through a set of specialized layers. It also supports
multi-objective optimization and co-evolution.

Illustrated in Figure 4, the client-server architecture is
composed of five main module types: a database, a server,
one or more evolver clients, and a pool of evaluation clients.
The system works on data by separating the EC generation
concept into two distinct steps: deme evolution and fitness
evaluation. Deme evolution is carried out by evolver clients.
It consists in applying genetic and natural selection operations
to evolve the deme through one generation. Fitness evaluation
is then computed by the pool of evaluator clients. When all
individuals have been evaluated, the generation is finished and
the demes are ready to be evolved again.

The database guarantees data persistency by storing the
demes and the evolution state. This is an important element
of robustness for such a software system, where computations
may last weeks or even months. Furthermore, the use of a
common database separates software elements specific to EC
from population storage management. Data are classified into
two categories: demes that require evolution, and individuals
that need evaluation. The use of a database in Distributed
BEAGLE is inspired by the distributed and persistent evo-
lutionary algorithm design pattern [21].

The server (master) acts as an interface between the different
clients (slaves) and the database. The primary function of the
server is to dispatch the demes to evolver clients, and the
individuals to evaluator clients. The number of individuals sent
to an evaluator client depends on a load balancing mechanism.
The mechanism dynamically adjusts the number of individuals
sent to each evaluator node based on its recent performance
history.

An evolver client sends requests for a deme to the server,
and then applies selection and genetic operations on this deme.
These operations are usually specific to the implemented EC
flavor. An evaluator client sends requests to the server for
individuals that need to be evaluated. The evaluator clients are
also specific to the problem at hand. A monitor client sends
requests to the server in order to retrieve the current state of
the evolution, allowing users to monitor it. This client does
not modify database content.

The load balancing policy is to regulate the size of indi-
vidual sets in order to approximately achieve constant time

periods between successive evaluator requests. For fast clients,
more individuals are sent in order to lower communication
latency. For slow clients, fewer individuals are sent in order
to minimize synchronization overheads at the end of an
evaluation cycle. When all individuals of a deme have been
distributed and after a time out proportional to the load
balancing time period, individuals that have been sent to
lagging nodes are automatically re-dispatched to other nodes
by the server until it receives a fitness response. If duplicate
answers are received, only the first one is kept and all others
are discarded. This approach both reduces the time needed to
complete a generation and assures general fault tolerance for
the system.

Distributed BEAGLE is a cross-platform Unix/Windows
library, developed using an SQLite database2, portable TCP/IP
socket and threading classes3, and XML (eXtensible Markup
Language) [22] for data encoding.

VI. CONCLUSION

This paper has introduced a mathematical model for pre-
dicting the speedup of the master-slave architecture for PDEC.
This model takes into account the number of slave processors,
the average network latency, the average marshalling times,
the average effective network bandwidth (transmission times),
and the average fitness evaluation time for individuals. Results
have shown that the master-slave architecture is able to scale
up well for a wide range of applications, as long as fitness
evaluation time is much greater than transmission time of
individuals (which is usually the case for real-world problems),
and that latency is not too large. For example, an application
that requires about 0.25 sec for fitness evaluation will be
able to reach around 82% of the optimal speedup when using
100 processors over a typical switched LAN of 100Mbits/sec,
whereas a fitness evaluation time of 1 sec yields about 95%.

The theoretical predictions made by this model have also
been confirmed by an efficient and robust master-slave imple-
mentation named Distributed BEAGLE. Results have shown
that the speedups predicted by the model fit very well with
the actual speedups observed with this implementation. We
conclude that the popular impression that master-slave PDEC
cannot scale up well because of the bottleneck created by the
master is misconceived. Of course this bottleneck exists. But
it is not that restrictive in practice. Today’s gigabit Ethernet,
which is becoming mainstream in PCs, promises greater
efficiency and scale. InfiniBand (10 Gbits/sec) which is just
around the corner, holds even greater potential for very large
scale master-slave PDECs.

Another contribution of this paper is to demonstrate that
the basic policy of p-slaves-p-sets for the master-slave is sub-
optimal, especially in the presence of failures, when work has
to be re-dispatched to other processors.

The master-slave benefits were also put into perspective with
those of the island-model. We argue that the former can be
made just as robust as the latter, if not more, by assuring data
integrity using a centralized persistent database. Moreover,

2http://www.sqlite.org
3http://www.gel.ulaval.ca/∼parizeau/PACC

http://www.sqlite.org
http://www.gel.ulaval.ca/~parizeau/PACC
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the set-up and management of a large scale master-slave can
be made almost transparent, whereas the management of an
island-model seems to require a more involved contribution
from the user, especially if the available computer resources
are not within a controlled environment (i.e. Beowulf cluster).
The master-slave can efficiently exploit new resources that
become available at any time and can also be made fault-
tolerant to lost resources. In that context, we are currently
developing a special screen-saver that will soon be installed
on all of our Windows workstations which run idle most of the
day. Statistics over a one week period have shown that the 55
workstations in our lab run completely idle 78% of the time.
An important challenge, however, is to make this screen-saver
secure enough so as to prevent the distribution of viruses in
place of evolutionary computations!
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