
Open BEAGLE: A New Versatile C++ Framework for
Evolutionary Computations

Christian Gagné and Marc Parizeau

Laboratoire de Vision et Systèmes Numériques (LVSN),
Département de Génie Électrique et de Génie Informatique,

Université Laval, Québec (QC), Canada, G1K 7P4.
E-mail: {cgagne,parizeau}@gel.ulaval.ca

Abstract

This paper introduces a new Evolutionary
Computation (EC) framework named Open
BEAGLE, that we have been developing and
improving since 1999. Coded in C++, this
framework offers solid object oriented foun-
dations based on design patterns. It con-
tains a basic generic EC framework on which
other specialized frameworks can easily be
constructed. Release 1.0 of Open BEAGLE
implements two specialized frameworks: a
simple genetic algorithms framework, and a
complete genetic programming framework.
Its power and ease of use is demonstrated
through an example of the latter for the clas-
sic symbolic regression problem.

1 Introduction

Open BEAGLE is an Evolutionary Computation (EC)
framework entirely coded in C++. The recursive
acronym BEAGLE means the Beagle Engine is an Ad-
vanced Genetic Learning Environment1. Beagle was
also the name of the English vessel on which Charles
Darwin embarked as a naturalist for his famous cir-
cumnavigation of the world. The name Beagle was
previously used in the 1980’s for pattern recognition
software based on EC principles (Forsyth, 1981). The
adjective Open was added to our framework to distin-
guish it from this software, and also to insist on the
open source aspect of the project.

1In French, Beagle est un Environnement d’Apprentis-

sage Génétique Logiciel Évolué.

The Open BEAGLE architecture follows the principles
of Object Oriented (OO) programming, where some
abstractions are represented by loosely coupled objects
and where it is common and easy to reuse code. Open
BEAGLE was designed with the objectives of provid-
ing an EC framework that is generic, user friendly,
portable, efficient, robust, elegant and free.

Genericity With Open BEAGLE, the user can ex-
ecute any kind of EC, as far as it fulfills some min-
imum requirements. The necessary condition is to
have a population of individuals to which a sequence
of evolving operations is iteratively applied. So far,
two specialized frameworks were implemented using
Open BEAGLE: Genetic Algorithms (GA) and Ge-
netic Programming (GP). An Evolutionary Strategies
(ES) framework is also planned for a future release.
The user can take any of these specialized frameworks
and modify them further to create his own specialized
flavor of evolutionary algorithms.

User Friendliness Open BEAGLE provides several
mechanisms that offer a user friendly programming in-
terface. For example, memory management of dynam-
ically allocated objects is greatly simplified by the use
of reference counting and automatic garbage collec-
tion.

Portability The Open BEAGLE code is compliant
with the C++ ANSI/ISO 3 standard. It requires the
Standard Template Library (STL) (Musser and Saini,
1996). No specific calls are made to the operating
system nor to the hardware.

Efficiency To insure efficient execution, particular
attention was given to optimization of critical code sec-
tions. Detailed execution profiles of these sections were



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 2

done. Also, the fact that Open BEAGLE is written in
C++ contributes to its overall good performance.

Robustness Many validation statements are em-
bedded into the code to ensure correct operation and
to inform the user when there is a problem. Robust
mechanisms for periodically saving the current evo-
lution state have also been implemented in order to
enable automatic restart of interrupted evolutions.

Elegance The interface of Open BEAGLE was de-
veloped with care. Great efforts were invested in de-
signing a coherent software package that follows good
OO and generic programming principles. Moreover,
strict programming rules were enforced to make the
C++ code easy to read, understand, and modify.

Free Sourceness The source code of Open BEA-
GLE is free, available under the GNU Lesser Gen-
eral Public License (LGPL) (Free Software Foundation
Inc., 2000). It can thus be distributed and modified
without any fee. Open BEAGLE is available on the
Web at http://www.gel.ulaval.ca/~beagle.

2 Survey of Existing EC software

Although many EC software systems have been de-
veloped over the past decade, only a few are generic
enough to implement different flavors of algorithms.
We now briefly review three of the most signifi-
cant ones, that were designed using OO programming
paradigms, and that we feel are comparable to Open
BEAGLE: gpc++ (Fraser, 1994), EO (Merelo et al.,
2001) and ECJ (Luke, 2001).

gpc++ is one of the first known C++ framework for
tree-based GP2. Although gpc++ and Open BEAGLE
share some philosophic and implementation aspects,
gpc++ contains C-like constructs which do not pro-
mote good OO practices. For example, the GP tree is
structured as a prefix list of the function and terminal
names (a list of char*). To evaluate the trees, the user
needs to define a complex switch case that is very hard
to recycle. Also, gpc++ does not profit from design
pattern (Lenaerts and Manderick, 1998).

EO, which stands for Evolving Objects, is a C++
framework for EC. Open BEAGLE and EO share some
design concepts, essentially by separating the algo-
rithms (like genetic operators) from the data structure
(the populations for instance). But their implementa-
tions are somewhat different: EO uses generic pro-
gramming extensively (sometimes called static poly-
morphism), as opposed to Open BEAGLE which uses

2Strictly speaking, gpc++ is not a generic EC frame-
work, but the comparison is still interesting.

GA GP Other EC

Generic EC framework

Object oriented foundations

C++ Standard Template Library (STL)

Figure 1: Software architecture diagram.

some generic programming concepts to enhance the
user experience, but mostly uses polymorphism by in-
heritance (sometimes called dynamic polymorphism).
All evolutionary processes and parameters in EO must
be fixed at compile time. This may enhance perfor-
mance, but certainly degrades the user experience and
reduces the overall flexibility of the architecture. At
the time of writing, EO implements GA and ES. An
experimental implementation of GP is also available.

Finally, ECJ is a complete, Java-based environment
for EC. We chose ECJ among all available Java-based
EC systems because it is a full featured, well-made
OO system. Like Open BEAGLE, it is designed fol-
lowing an OO methodology, and uses polymorphism
by inheritance extensively. However, although Java is
a nice coherent language, it suffers from relatively poor
execution speed3 which is indeed a serious limitation
for CPU-intensive tasks like EC.

3 Software Architecture

Open BEAGLE has a three level architecture, as il-
lustrated in Figure 1. The foundations are located
at the bottom, as an OO extension of the C++ lan-
guage and STL. The EC generic framework is built on
these foundations and is composed of features that are
common to all Evolutionary Algorithms (EA). Finally,
different independent modules specialize this generic
framework, each module implementing a specific EA.

3.1 Object Oriented Foundation

The OO foundations are the basis of the Open BEA-
GLE architecture. They are inspired from design pat-
terns (Gamma et al., 1994) and other environments
such as STL (Musser and Saini, 1996), the Java li-
brary (Campione and Walrath, 1998), and CORBA
(Henning and Vinoski, 1999).

3In principle, using an optimizing compiler that produce
machine code, Java and C++ programs should be able
to achieve comparable speeds. However, at the time of
writing, several benchmarks on the Web report that this is
not true in practice.



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 3

In Open BEAGLE, all classes are derived from an ab-
stract Object class. As a complete C++ object, the
Open BEAGLE object is an interface that includes
a set of general operations. An object is composed
of comparison functions, input/output functions, and
functions to interact with the reference counter.

The use of reference counters and smart pointers sim-
plifies the management of dynamically allocated ob-
jects. Indeed, each object owns a counter that keeps
track of the number of existing references to itself. A
smart pointer behaves like a standard C++ pointer,
but also increments and decrements the object’s ref-
erence counter when necessary. When an object’s ref-
erence counter is equal to zero, the object is released.
This mechanism allow the emulation of a garbage col-
lection process, similar to the ones that can be found
in higher level OO languages.

A smart pointer is associated to each object type. This
association is done by declaring a Handle member type
in all Open BEAGLE classes. For example, the smart
pointer associated to type MyClass would be of mem-
ber type MyClass::Handle. Furthermore, if there is
an inheritance relationship between two classes, the
same inheritance relationship exists between the two
Handle member types of these classes. For instance,
if class DerivedClass inherits from class BaseClass,
then member type DerivedClass::Handle inherits
from member type BaseClass::Handle. This very im-
portant mechanism in BEAGLE allows member type
Handle to perfectly simulate the standard C++ point-
ers, even in the context of polymorphism by inheri-
tance. This mechanism is implemented through tem-
plates that do most of the work. The programmer who
creates a new subclass needs only declare a typedef us-
ing that template.

Open BEAGLE makes heavy use of polymorphism by
inheritance, which means that object instances must
be dynamically allocated. Moreover, it is difficult to
copy or clone a given object when its exact type is un-
known. Thus, allocators have been implemented, i.e.
object factories that can allocate, clone and copy a
given data type. There is an allocator, named Alloc,
associated with each Open BEAGLE class. For ex-
ample, a class named MyClass incorporates a member
type MyClass::Alloc, that can be used to allocate,
copy and clone objects of type MyClass.

A generic object container has also been incorporated
into the OO foundation of Open BEAGLE: the bag.
The bag is a random access table of BEAGLE objects.
It is implemented as a dynamic array of smart point-
ers (i.e. std::vector<Object::Handle>). It is thus a
container that can be manipulated by the generic algo-

rithms of STL. Since the bag is also a BEAGLE object,
it can be referred to by smart pointers, and it is pos-
sible to create bags of bags. Just like for smart point-
ers and allocators, a bag member type is associated
with each object. For instance, for type MyClass, the
associated bag member type is MyClass::Bag. More-
over, when there is an inheritance relationship between
two classes, it is also respected by their embedded bag
member types, just like for the Handle and Alloc.

Data input and output is also an important aspect of
any high-level framework. The C++ language inte-
grates I/O streams that allow objects to be inserted
into and extracted from such media as files, console
or memory. By combining the C++ I/O stream con-
cept with the XML format, we developed XML I/O
streams. XML (eXtensible Markup Language (Ander-
son et al., 2000)) is an ideal language for representing
data because it is flexible, standardized, readable by
humans, and easily editable.

Data insertion and extraction into Open BEAGLE
XML streams are identical to data insertion and ex-
traction into standard C++ streams. Operators <<
and >> are defined for the Object class just like they
are defined for C++ atomic types. Their calls are sim-
ply mapped to associated read and write virtual mem-
ber functions. In these functions, class components are
inserted and extracted by calling their respective inser-
tion and extraction operators. In addition to these op-
erators, some interface member functions are defined
in the XML stream class to insert and extract XML
tags and attributes.

The functionalities exposed here emphasize the im-
portance of pure OO concepts in Open BEAGLE.
However, forcing all types to inherit from superclass
Object can be annoying, especially when the user has
already developed his own classes or when other li-
braries are used. To simplify the use of Open BEAGLE
in this context, a class template was written, named
WrapperT, to adapt foreign types to the Object inter-
face. Wrappers of C++ atomic types are also prede-
fined in Open BEAGLE. The wrapper concept is based
on the adapter design pattern.

3.2 Generic EC Framework

The generic EC framework is the extension of OO
foundations. It offers a solid basis for implementing
Evolutionary Algorithms (EA). It is composed of a
generic structure for populations, an evolution system
and a set of operators packed in an evolver. All com-
ponents of the generic EC framework are integrated
together as modules that can be replaced or special-
ized independently. This modular design gives much



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 4

Vivarium

Deme

Individual

Genotype

Evolver

Bootstrap
Operator Set

Main-Loop
Operator Set

Evolution
System

Context

D
at

a 
St

ru
ct

ur
es

A
lg

or
ith

m
s

State

Evolve

Register

Randomizer

+

z x

Figure 2: Generic EC Framework Architecture

versatility to the framework and simplifies the imple-
mentation of any EA. In Open BEAGLE, evolving
populations are structured into four hierarchical lev-
els: vivarium, demes, individuals and genotypes (see
Figure 2). The vivarium encompasses all individuals
currently living in the evolving system. These individ-
uals are aggregated into one or more demes (Langdon,
1998) that represent groups of individuals evolving in
closed environments. A deme saves its statistics and
has a hall-of-fame of the best individuals. In general,
at each generation, some individuals can migrate in
between the different demes of the vivarium. The vi-
varium is implemented as a bag of demes, and demes
are implemented as bags of individuals.

The individuals represent potential solutions to a prob-
lem. An individual is defined by two types of data: the
measure of its fitness (within its environment) and one
or more genotypes. The genotype is the genetic data of
an individual. The generic EC framework implements
an interface describing a generic genotype model. This
interface must be specialized in a specific framework.
For example, in the case of GP, the genotype is spe-
cialized into an expression tree class.

In the generic framework, there is also an evolution
system that contains the configuration of the genetic
engine. It is made of three components: a context al-
locator, the register, and a randomizer (see Figure 2).
During the evolving process, a context represents the
current state of the evolution. The basic context of the
generic framework gives some essential contextual in-
formation, like references to an actual deme, individual
and genotype, and also the current generation number.
For some EA, a more specialized context could be de-
fined. For instance, in the GP framework a call stack
related to the GP tree (the genotype) is added to the
context. This context concept is similar to the execu-
tion context in a computer, which comprises the values
of the different registers, counters and pointers of the
CPU.

Given that parameters of Open BEAGLE are dis-
tributed in different entities, an agent named the reg-

Table 1: Generational evolver.
Bootstrap Operators Main-loop Operators

1 read parameters; 1 read parameters;
2 if(restart) 2 apply tournament selection;
3 read milestone; 3 apply crossovers;

else 4 apply mutations;
4 generate population; 5 compute fitness;
5 compute fitness; 6 apply random ring migration;
6 compute statistics; 7 compute statistics;
7 display statistics; 8 display statistics;

end if; 9 check for termination;
8 check for termination; 10 write milestone;
9 write milestone;

ister is used to centralize information. References to
BEAGLE objects can be associated to tags in the reg-
ister and entities such as operators can dynamically
add, delete, access, and modify them. The register is
also responsible for parsing XML configuration files.

The randomizer is the system’s random number gener-
ator. It can generate integer or floating-point numbers
following uniform or gaussian distributions. The gen-
erator seed can be assigned to an arbitrary value. This
value is inscribed into the register so that the user can
reproduce any evolution. By default, the seed is ini-
tialized with the current clock value of the computer.

The operators and evolver are central concepts of the
generic EC framework. In Open BEAGLE, the evolv-
ing process is a sequence of operations that are iter-
atively applied on the demes of the vivarium. Each
operation is defined as an operator. There are two op-
erator sets in an evolver: the bootstrap and the main-
loop. The bootstrap operator set is the list of opera-
tions to apply on each deme during initialization. The
main-loop operator set is the list of operations itera-
tively applied on each deme, at each generation. This
operators/evolver model is based on the strategy de-
sign pattern, applied to the specific case of EC.

For common EA, users need not define their own
evolver and operators, standard ones can be used with-
out modification. For example, Table 1 presents a
standard generational evolver. Predefined operators
include selection, crossover, mutation, statistics cal-
culation, and many more. Only the fitness function
requires to be specialized from an abstract evaluation
operator.

In Table 1, operator 1 is called by the evolver at the
start of each generation. It simply checks the regis-
ter for the existence of a tag specifying the file name
of an XML configuration file. If this file exists, then
it is parsed and the register is updated with new tag
values. In this way the user can modify parameters
in between generations, without having to interrupt
the evolution. In the bootstrap set, special if-else



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 5

Table 2: Steady-state evolver.

Main-loop Operators
1 read parameters;
2 steady-state loop;
3 apply random ring migration;
4 compute statistics;
5 display statistics;
6 check for termination;
7 write milestone;

operator enables the construction of conditional oper-
ator sets. In this case, the executed set of operators
is determined by the boolean value of the restart
tag. In Open BEAGLE, a milestone represents the
contents of the register and vivarium at a given point
in time. Operator 3 is there to read a milestone in
case of an evolution restart. Otherwise, operators 4
through 7 are executed in sequence to initialize the vi-
varium. The termination check operator determines if
the evolution should be halted. If so, it sets a flag into
its context, instructing the evolver to halt at the end
of the current loop.

With the operators/evolver concept, most EA can be
implemented easily, just by modifying the set of op-
erators in the evolver. An example of this flexibility
is presented in Table 2, where a steady-state (Lang-
don, 1998) evolver is built simply by replacing oper-
ators 2 through 5 in the main-loop of Table 1, with
a special steady-state loop operator which implement
the steady-state procedure: choose either reproduc-
tion, mutation, or crossover; select individual(s) using
tournaments; apply chosen genetic operation; replace
random individuals; and compute fitness. Operators
are given access to the system by the evolver through a
context handle which allows them to interact with the
vivarium, the register, and the randomizer, in order to
accomplish mostly anything.

We claim that this operators/evolver concept is an im-
portant feature that offers great versatility for rapid
software design of complex EC systems. For instance,
using this approach, an EC system could be made to
run on a cluster of computers by replacing operators
in the evolver, thus shielding the user from much of
the underlying complexity. Moreover, Open BEAGLE
is fully reconfigurable, all of its components can be
specialized through dynamic polymorphism.

3.3 Specialized Frameworks

The specialized frameworks are at the top level of the
Open BEAGLE architecture. For the current release,
two specialized frameworks have been implemented: a

GA framework and a GP framework. Open BEAGLE
is built in such a way that the user can either imple-
ment his own EA flavor from an existing framework,
or he can build directly on the generic framework.

The GA framework is very simple. It defines a GA spe-
cific genotype that consists of a bit string, and genetic
operators enabling bit string crossover and mutation.
The specific framework also has some functionalities
that enable the mapping of a bit string into a vector
of floating numbers defined over a given range. With
this simple framework, it is possible to do standard
GA as presented in (Holland, 1975).

The GP framework is more elaborate. New mecha-
nisms specific to the paradigm need to be defined. To
genetically program a computer for an application of
GP, two issues of the problem domain must be ad-
dressed. First, the user needs to define the datum
type, that is the type of data (variables) that will be
manipulated by the genetic programs. Once the da-
tum defined, the primitives used for building GP in-
dividuals must also be specified. A primitive is also
an application specific operation associated with the
nodes of the GP trees. The primitives must process
and return variables of the specific datum type. All
primitive used for a given problem are inserted into a
primitive set.

In Open BEAGLE, the datum type must be derived
from the Object class. Generally, this can be done
using a predefined Open BEAGLE type, or by adapt-
ing a foreign type using a wrapper. To create a
primitive that can be used in GP trees, the user
must define a concrete class derived from the abstract
GP::Primitive class. A pure virtual function in this
abstract class must be overloaded in order to imple-
ment the characteristic operation of the primitive. The
interface of the abstract primitive also allow variations
from basic GP. For instance, strongly-typed GP (Mon-
tana, 1995), and randomly generated ephemeral con-
stants (Koza, 1992) can be implemented by overload-
ing appropriate functions.

Primitives must be packaged into sets of usable primi-
tives. It is from these sets that the GP trees are gener-
ated. A primitive superset is an extension of the evo-
lution system, and there can be different sets of prim-
itives for a given evolution. The number of these sets
specifies the number of genotypes in individuals, as il-
lustrated in Figure 3. This feature allows for the imple-
mentation of Automatically Defined Functions (ADF)
(Koza, 1992; Koza, 1994).



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 6

Primitive Super Set

Primitive Set 1

+,-,*,/,ADF1,ADF2
x

Primitive Set 2

+,-,*,/,ADF2
x,ARG1,ARG2

Primitive Set 3

+,-,*,/
x,ARG1,ARG2

Individual

Genotype 1
x

+

x

ADF1 x

Genotype 2

ADF2

ARG1 x

Genotype 3

/

ARG1ARG2

Figure 3: Relation between primitive sets and GP
trees.

4 Simple GP Example

In less than a hundred lines of code, this section
presents the implementation of a simple GP problem
with Open BEAGLE. The aim is to demonstrate the
ease of use of the environment, and at the same time
to give additional insight into its programming philos-
ophy. The problem is the classic symbolic regression
of a simple polynomial function p(x) = x4+x3+x2+x
(Koza, 1992). The discussion follows a top-down ap-
proach. The main function is first exposed, then the
implementation of a primitive, and finally the imple-
mentation of the fitness evaluation operator.

The main routine is presented in Figure 4. It follows
the five steps needed to implement any GP application
with Open BEAGLE:

1. Build the primitives and insert them into the
primitive set(s) (lines 8 to 12). Here we define
a single set using built-in arithmetic functions;
the ADD primitive is developed further in Figure
5. Problem variable x is also implemented as a
primitive (line 13; a token is simply a named value
wrapped into a primitive).

2. Build the GP evolutionary system using the prim-
itive set(s) (line 15);.

3. Build the evaluation and termination operators
(lines 17 and 18). Here an instance of class
SymbRegEvalOp is used as the fitness evaluation
operator; this class is detailed in Figure 6. An in-
stance of class MaxGenerationTermOp is also allo-
cated, even though this step is not really required
since this is the default termination operator.

4. Build the evolver using the operators of the pre-
vious step (lines 20 and 21). Here we use the
standard generational evolver that requires only a

1 #include <beagle/GP.hpp>
2 #include "SymbRegEvalOp.hpp"
3 using namespace Beagle;
4 int main(int argc, char *argv[])
5 {
6 try {
7 // 1: Build primitive set
8 GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;
9 lSet->insert(new GP::Add);

10 lSet->insert(new GP::Subtract);
11 lSet->insert(new GP::Multiply);
12 lSet->insert(new GP::Divide);
13 lSet->insert(new GP::TokenT<Double>("x"));
14 // 2: Build a system
15 System::Handle lSystem = new GP::System(lSet);
16 // 3: Build operators
17 EvaluationOp::Handle lEvalOp = new SymbRegEvalOp;
18 TerminationOp::Handle lTermOp = new MaxGenerationTermOp;
19 // 4: Build an evolver and a vivarium
20 Evolver::Handle lEvolver =
21 new GP::GenerationalEvolver(lEvalOp,lTermOp);
22 Vivarium::Handle lVivarium = new GP::Vivarium;
23 // 5: Initialize and evolve the vivarium
24 lEvolver->initialize(lSystem,argc,argv);
25 lEvolver->evolve(lVivarium);
26 }
27 catch(Exception& inException) {
28 inException.terminate();
29 }
30 return 0;
31 }

Figure 4: main for the symbolic regression problem.

fitness operator with an optional termination op-
erator. Also build the GP vivarium (line 22). An
important feature of Open BEAGLE, which is not
illustrated in this simple example, is the possibil-
ity for the user to build a vivarium of specialized
demes, individuals, or even genotypes. This fea-
ture is implemented through the use of allocators
(the default vivarium constructor of line 22 uses
allocators for the default demes, individuals, and
genotypes).

5. Launch the evolution (line 25) after initializa-
tion (lines 24). It is the evolver::initialize
method that instructs all operators to initialize
themselves, that is to register all their parameters
into the register, before proceeding to command-
line parsing (argc, argv arguments). Typically,
the command-line specifies an XML configuration
file which is in turn parsed to override default op-
erator parameters with user defined ones.

Note that all object instances are dynamically allo-
cated by calls to the C++ new operator, and referenced
by smart pointers (Handle member types). This is the
recommended procedure in Open BEAGLE.

The next step is to declare the datum type. For the
symbolic regression problem, the data are floating-
point numbers. In plain C++ we would use atomic
type double. But in Open BEAGLE, data must be
derived from the Object class. This can be achieved



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 7

1 #include "beagle/GP.hpp"
2 using namespace Beagle;
3 class Add : public GP::Primitive
4 {
5 public:
6 Add() : GP::Primitive(2, "+") { }
7 virtual void
8 execute(GP::Datum& outResult,GP::Context& ioContext)
9 {

10 Double lArg1;
11 get1stArgument(lArg1,ioContext);
12 Double lArg2;
13 get2ndArgument(lArg2,ioContext);
14 Double& lResult = castObjectT<Double&>(outResult);
15 lResult = lArg1 + lArg2;
16 }
17 };

Figure 5: Add primitive.

by wrapping atomic type double:

typedef WrapperT<double> Double;

Thereafter, type Double can be used as a synonym
for type double. In fact, type Double is pre-defined
in Open BEAGLE, among several other standard
wrapped types.

With the datum now defined, it is possible to imple-
ment any number of primitives. For the case of the
symbolic regression problem, we only need the follow-
ing primitives: +, −, ×, /, and token x. Primitive
+ is defined in Figure 5. The implementation of the
other primitives is very similar. All primitives used in
the symbolic regression are in fact pre-defined in Open
BEAGLE, because they are so common.

Class Add inherits from abstract class GP::Primitive.
The default constructor instantiates the object us-
ing the GP::Primitive constructor by specifying its
number of arguments (2) along with its name ("+").
Method execute is used to implement the characteris-
tic function of the primitive, that is to add two Double
values which are first extracted from the current con-
text (lines 11 and 13). To return the result, output
argument outResult needs to be cast from Datum to
Double (line 14) using template function castObjectT
which is a wrapper for either a dynamic of static cast,
depending on debug flags.

Finally, when all primitives are established, either by
using pre-defined primitives or by creating new ones,
the evaluation operator must be implemented. This
operator is always problem specific and must be im-
plemented in every new application. For the symbolic
regression example, the evaluator operator is named
SymbRegEvalOp and is presented in Figure 6. Method
initialize (called by the evolver) samples 20 points
of the polynomial expression (i.e. x4 + x3 + x2 + x),
taken randomly in the interval [−1, 1]. Thereafter, the

1 #include <cmath>
2 #include <vector>
3 #include "beagle/GP.hpp"
4 using namespace Beagle;
5 class SymbRegEvalOp : public GP::EvaluationOp
6 {
7 private:
8 std::vector<Double> mX; // Sampled x-axis values
9 std::vector<Double> mY; // Sampled y-axis values

10 public:
11 SymbRegEvalOp(int inN=20) : mX(inN), mY(inN) { }
12 virtual void initialize(System& ioSystem)
13 {
14 for(unsigned int i=0; i<mX.size(); i++)
15 {
16 mX[i] = ioSystem.getRandomizer().rollUniform(-1.,1.);
17 mY[i] = mX[i]*(mX[i]*(mX[i]*(mX[i]+1.)+1.)+1.);
18 }
19 }
20 virtual Fitness::Handle
21 evaluate(GP::Individual& inIndividual,GP::Context& ioContext)
22 {
23 unsigned int lHits = 0; // number of hits
24 double lQErr = 0.; // square error
25 for(unsigned int i=0; i<mX.size(); i++) {
26 setValue("x",mX[i],ioContext);
27 Double lResult;
28 inIndividual.run(lResult,ioContext);
29 double lError = std::fabs(mY[i]-lResult);
30 if(lError < 0.01) lHits++;
31 lQErr += (lError*lError);
32 }
33 double lMSE = lQErr/mX.size(); // mean square error
34 double lRMSE = std::sqrt(lMSE); // root-mean square error
35 double lNorm = (1./(lRMSE+1.));
36 return new GP::KozaFitness(lNorm,lRMSE,lMSE,lQErr,lHits);
37 }
38 };

Figure 6: Symbolic regression evaluation operator.

operator is ready to evaluate the fitness of any indi-
vidual. Each time the operator is executed, method
evaluate will be called for each individual that needs
evaluation. An individual is processed (run method,
line 28) 20 times, once for each sampled value. Re-
call that problem variable x is just one of the sys-
tem’s primitive and that operators have access to
the primitive set(s) through the context. Method
EvaluationOp::setValue is thus called (line 26) to
update the value of x before “running” the individual.
The root-mean square (RMS) error is evaluated us-
ing the error between the desired and computed value
for the 20 random samples. At the end of these com-
putations, method evaluate returns the individual’s
five fitness values (normalized, adjusted, standardized,
raw, and hits), as defined by Koza (Koza, 1992).

5 Future Work

Open BEAGLE currently implements GA and GP
frameworks that were successfully used to tackle hand-
writing recognition (Lemieux et al., 2002) and lens sys-
tem design (Beaulieu et al., 2002) problems. Plans for
future releases include a specialized Evolution Strate-



Open BEAGLE, C. Gagné and M. Parizeau, GECC0 2002 Late-Breaking Papers. 8

gies (ES) framework as well as new EA for genetic re-
engineering of existing solutions. Moreover, we hope
that new users will contribute to its development by
suggesting their own specific frameworks. If Open
BEAGLE is successful, we plan to initiate an open
source project where interested people could freely
continue the development of the software framework.

We are also currently developing a module named Dis-
tributed BEAGLE, that will enable the distribution of
the evolving process on a cluster of networked comput-
ers. This module, independent of the used EA, will be
user friendly. The migration of a mono-process appli-
cation to a distributed model will be done by simply
adding new distribution operators in the evolver.

Finally, we plan to develop a web interface to the sys-
tem, named BEAGLE Visualizer. This system will
allow visualization of evolution statistics and popula-
tions through a Web browser. This graphical interface
will consist of CGI scripts that will analyze popula-
tions and statistics of the XML Open BEAGLE files.

6 Conclusion

Open BEAGLE is built on strong OO foundations,
that augment the C++ language and STL to offer a
solid and flexible basis for evolutionary computations.
The EC framework is composed of a generic kernel
that combines the population structure, the evolution
system, the operators and the evolver. Specific frame-
works allow different evolutionary algorithms. Open
BEAGLE is thus a versatile, easy to use, portable, ef-
ficient, robust, elegant and free C++ environment for
designing complex EC systems.

Acknowledgments The authors would like to ex-
press their gratitude to Julie Beaulieu for her assis-
tance in the writing of this document. This research
was supported by an NSERC-Canada scholarship to C.
Gagné and an NSERC-Canada grant to M. Parizeau.

References

Anderson, R., Baliles, D., Birbeck, M., Kay, M., Liv-
ingstone, S., Loesgen, B., Martin, D., Mohr, S.,
Ozu, N., Peat, B., Pinnock, J., Stark, P., and
Williams, K.: 2000, Professional XML, Wrox
Press, Chicago, IL, USA

Beaulieu, J., Gagné, C., and Parizeau, M.: 2002, Lens
system design and re-engineering with evolutionary
algorithms, in Genetic and Evolutionary Computa-
tions COnference (GECCO) 2002, New York, NY,
USA

Campione, M. and Walrath, K.: 1998, The Java Tuto-
rial, Addison-Wesley, Reading (MA), USA, 2 edi-
tion

Forsyth, R.: 1981, BEAGLE A Darwinian Approach
to Pattern Recognition, Kybernetes 10, 159–166

Fraser, A. P.: 1994, Genetic Programming in C++,
Technical report, Cybernetics Research Institute,
University of Salford

Free Software Foundation Inc.: 2000,
GNU Lesser General Public License,
http://www.gnu.org/copyleft/lesser.html

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J.: 1994, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Read-
ing, MA, USA

Henning, M. and Vinoski, S.: 1999, Advanced CORBA
Programming with C++, Addison-Wesley, Read-
ing, MA, USA

Holland, J. M.: 1975, Adaptation in Natural and Ar-
tificial Systems, University of Michigan Press, Ann
Arbor, MI

Koza, J. R.: 1992, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, USA

Koza, J. R.: 1994, Genetic Programming II: Auto-
matic Discovery of Reusable Programs, MIT Press,
Cambridge, MA, USA

Langdon, W. B.: 1998, Data Structures and Ge-
netic Programming: Genetic Programming + Data
Structures = Automatic Programming!, Kluwer,
Boston, MA, USA

Lemieux, A., Gagné, C., and Parizeau, M.: 2002, Ge-
netical engineering of handwriting representations,
in International Workshop on Frontiers of Hand-
writing Recognition (IWFHR) 2002, Niagara-on-
the-Lake, ON, Canada

Lenaerts, T. and Manderick, B.: 1998, Building a
genetic programming framework: The added-value
of design patterns, in First European Workshop on
Genetic Programming, pp 196–208

Luke, S.: 2001, ECJ Evolutionary Computation Sys-
tem, http://www.cs.umd.edu/projects/plus/ec/ecj

Merelo, J., Keijzer, M., and Schoenauer, M.:
2001, EO Evolutionary computation framework,
http://eodev.sourceforge.net/

Montana, D. J.: 1995, Strongly Typed Genetic Pro-
gramming, Evolutionary Computation 3(2), 199–
230

Musser, D. R. and Saini, A.: 1996, STL Tutorial
and Reference Guide: C++ Programming with the
Standard Template Library, Addison-Wesley, Read-
ing, MA, USA


