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A Comparative Analysis of Regional Correlation,
Dynamic Time Warping, and Skeletal Tree
Matching for Signature Verification
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Abstract—This correspondence reports on a comparative study of
three different signal matching algorithms in the context of signature
verification: regional correlation, dynamic time warping, and skeletal
tree matching. The algorithm performances are compared in a single
experimental protocol over the same database. Algorithm performance
is analyzed in terms of verification error rates, execution time, and
number and sensitivity of algorithm parameters. Three different script
types (normal signatures, handwritten passwords, and initials) and
three different signal representation spaces (position, velocity, and ac-
celeration) are considered. Verification errors show that no algorithm
consistently out-performs the others in all circumstances. Where sig-
nificant differences are observed, regional correlation comes first in
four out of the five cases. Skeletal tree matching is a close second to
regional correlation in one case and comes first in another (dynamic
time warping being a close second in this latter case). The complexity
of the algorithms varies greatly. Regional correlation is the fastest,
followed by dynamic time warping, while skeletal tree matching is very
time-consuming. Finally, it is observed that regional correlation is more
parameter-sensitive than dynamic time warping.

Index Terms—Algorithm comparison, dynamic time warping, re-
gional correlation, signal matching, signature verification, skeletal tree
matching.

I. INTRODUCTION

In on-line signature verification, many kinds of information can
be extracted while the signature is being executed (as opposed to
the off-line problem where the only information available is the
signature image itself) [1]. But, in general, there are two groups
of methods depending on the type of features used for the classi-
fication process, functions or parameters [2]. In the first group,
signals measured with an instrumented pen or other apparatus are
considered as mathematical time functions whose values directly
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or indirectly constitute the feature set. In the second group, param-
eters computed from these signals are used as features. With this
last approach, both global and local information can be considered
with the greatest efficiency in terms of algorithmic simplicity, com-
putational speed, and memory requirements. However, the prob-
lem of selecting the right features is not trivial and methods based
on complete signals have so far yielded better results [2].

The main objective of this research was to study the relative
performances of three signal comparison algorithms in the context
of signature verification: regional correlation [3]-[5], dynamic time
warping [6]-[8], and skeletal tree matching [9], [10]. Three com-
parison criteria are considered: classification error rates, execution
time, and number of parameters. Obviously, a good signal match-
ing algorithm needs to yield low classification error rates, but at
what cost in terms of execution time? Considering the fact that
multiple signal comparisons are usually necessary in a complete
signature verification system and that the user does not want to wait
more than a few seconds for an answer, the algorithm should not
only perform well, but quickly. The number of parameters is also
an important aspect of algorithm performance. Different signals
from different signers may need different parameter values. Too
many parameters needing fine-tuning can significantly degrade the
optimal classification performance of an algorithm when there is
not enough data to precisely estimate these optimal parameter val-
ues.

Regional correlation has been used for signature verification on
acceleration and pressure signals obtained from a special acceler-
ometer pen [3]-[5). Dynamic time warping has also been used for
signature verification on position and pressure signals obtained from
a digitizer [7], [8]. Tree matching has never been used for signature
verification. These previous results are, however, difficult to com-
pare since they originate from different experiments with different
databases and experimental protocols. Differences in the quality
and types of forgeries are enough to render any comparison mean-
ingless, as are the differences in the sizes of the training and test
subsets, in the number of trials permitted and in the type of clas-
sifier used, etc. [2]. With a unique database and experimental pro-
tocol, we have been able to study and compare the relative merits
and pitfalls of these algorithms.

In the next section, the experimental protocol used to compare
the algorithms with different script and signal types is presented.
Then, in Section III, the particular algorithm implementations are
described. Also, each algorithm is characterized in terms of its
computational complexity and invariance to time-scale transforms
on the input signals. Section IV gives the experimental results and
discusses algorithm performances in terms of the three criteria pre-
viously mentioned.

1I. EXPERIMENTAL PrOTOCOL

The experimental protocol is based on signals extracted by a
digitizer which measures the position of the pentip along two or-
thogonal axes of a writing surface. These signals (x(¢) and y (7))
are sampled at a fixed frequency and stored in a signature database.
Information about the state of the pen switch, although available
in the database, is not used in this study because it was judged to
be unreliable. Most commercial digitizers have been designed for
CAD applications, not for handwriting. Pen switch travel is too
long and most signers cannot maintain sufficient pressure to acti-
vate the switch while the pen is in contact with the paper. New
digitizers specially designed for handwriting applications are now
available (see for example [11]).

Although portions of signals between a pen-lift and a pen-down
may be considered less stable, not removing them will not affect
our results because of the relative nature of this study. Indeed, each
algorithm will have to deal with the same signals. Furthermore,
one can argue that keeping these signal portions is advantageous
since, not being visible, they are harder to imitate.
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A. Database

The digitizer used to build the signature data base was a Sum-
magraphics (model: bit pad one) which sampled coordinates at the
rate of 65 Hz and with a resolution of 200 lines/inch. Signature
samples were signed along a line parallel to the horizontal axis of
the digitizer (x direction). Volunteers were chosen from a popu-
lation of students and professors at the Ecole Polytechnique, half
of them being male and 18% left-handed.

A total of 50 signatures, 50 handwritten passwords, and 50 ini-
tials were collected from each of 39 volunteers. Data were col-
lected in five sessions, usually one session per day for a week (10
samples of each script type per session). After database validation,
48 samples of each script type, on average, remained for each vol-
unteer. There were no forgeries.

B. Random Forgeries

Random forgeries were used to simulate real forgeries. A ran-
dom forgery is defined as an authentic signature from a signer other
than the one serving as the reference. Random forgeries were judged
sufficient in this study for the following reasons. First, because of
the comparative nature of the experiment, the quality of forgeries
may influence the absolute results, but should not affect the relative
results. Moreover, even a skilled forger cannot easily imitate the
dynamics of a signature, especially in the acceleration domain
where a random forger might even do a better job. Second, good
skilled forgeries are very difficult to obtain, especially in large
numbers. However, to make random forgeries more realistic, they
were scaled to fit into the same space (box) as the corresponding
reference. The rationale behind this normalization is that the most
easily forged parameter in a signature is probably its global size.

C. Script Types

Three different types of script were used as signatures to com-
pare the algorithms: the normal signature, a handwritten password
and the initials of the subjects. These script types enabled us to
verify the effect of the length and stability of the signals on the
algorithms. The signature is usually the longest and the most sta-
ble. It can be considered as a well-practiced handwritten password.
Passwords are shorter. Each volunteer chose his/her own 5- or
6-letter word and was instructed to practice writing it for as long
as necessary. Initials are even shorter but generally well practiced.

D. Signal Types

Three different types of signature signals were used to compare
the algorithms: position, velocity and acceleration of the pentip.
As for the script types, these different signal types enabled us to
verify that the experimental results were not an artifact of a partic-
ular representation space. The velocity and acceleration signals
were computed from the position signal after first- and second-time
derivatives. Only normal signatures were considered for these sig-
nal types because a previous study has shown that they out-perform
passwords and initials [12]. The differentiation algorithm was an
eleven-coefficient FIR filter £ (n) with a Lanczos window w(n):

_ 1|sin(ne) @ cos (nw,) _ o
h(n)—ﬂ'[ o P },n—l,Z, ,N (1)
[sin (xn/N)]
w B e — 2
(n) [xn/N] (2)

where w, = 27f, is the cut-off frequency and N is the number of
coefficients. The cut-off frequency was fixed at 16 Hz.

E. Classification Experiment

The first criterion used to evaluate algorithm performances is the
verification error. The process by which an error rate is estimated
for a particular algorithm and its parameter set is defined by what
we shall call here an experiment.

An experiment consists of 2T signal comparisons: T compari-
sons using authentic signals and T comparisons using random for-
geries. Thus an experiment is defined by 27 + 1 signals selected
from the signature database: 1 reference signal selected at random
within the database, T different authentic test signals selected at
random from scripts of the same signer as the reference (but not
the reference itself) and T different test signals selected at random
from subjects other than the reference (random forgeries). To rep-
resent a wide range of variations, the T random forgeries are chosen
from T different subjects.

When the 2T comparison results are obtained, the verification
error is evaluated by searching for the threshold which minimizes
the total error. The total error consists of the false rejection rate
(type I error) and the false acceptance rate (type I error).

III. SIGNAL MATCHING ALGORITHMS

The signal matching algorithms were taken from the literature
but were adapted for the particular constraints of our experimental
protocol [13].

A. Regional Correlation

The idea behind this algorithm is to cut the signals into regions
and to correlate corresponding regions over different time lags to
find the best possible match for each pair of regions. According to
Worthington et al. [5], the handwritten signature is more stable
during the pen-down parts of the signature and so, in this context,
acceleration signals have been segmented using the pen-down pen-
up transitions, rejecting the pen-up parts of the signature. How-
ever, this method often results in two incompatible lists of regions
for the reference and test signals because pen-lifts are not always
detected accurately and also because signers are not always con-
sistent.

Our version of the regional correlation algorithm does not use
pen-lift information because, based on the hypothesis that the sig-
nature is a learned process, that is, it is the result of a ballistic
motion with essentially no visual feedback, the pen-up parts of the
signature should be almost as stable as the pen-down parts and cer-
tainly harder to imitate. The segmentation process used is based
only on the observation that handwriting signals tend to fall out of
phase beyond a certain time interval. Hence, both the reference and
test signals are cut into an equal number of regions. For a given
signal, all regions are of the same length and regions are correlated
in pairs over all allowed time lags. Regions are initially middle-
aligned.

The time complexity of the regional correlation algorithm is
0(nd), where n is the length of the shortest signal (in sample
points) and & is the length of the regions. If the lengths of the re-
gions are kept constant, then the complexity is O(n).

The regional correlation algorithm is invariant to linear trans-
formation on the input signals because of its similarity measure,
linear correlation. Furthermore, this invariance is local to each re-
gion. This property means that neither scale nor offset will affect
its results.

In terms of time invariance, regional correlation is somewhat
limited to the synchronization of the different regions. This syn-
chronization will accommodate minor hesitation in the execution
of the signature, but will not compensate for linear or nonlinear
time warping within the regions.

B. Dynamic Time Warping

Our particular implementation is inspired by the work of Sakoe
and Chiba [6] in the field of speech recognition. Let W be a warping
function which maps, in sequence, sample points from a reference
signal a(¢) to samples points of a test signal b (r):

W= {w(1), w(2), -+, w(k). -, w(K)}
w(k) = (i(k), j(k)) (3)
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where i and j represent the time axes of the reference and test sig-
nals respectively (i = 1, - - - ,Jandj =1, - - - ,J). Letd(w(k))
be the distance between two sample points:

d(w(k)) = a(i(k), j (k)
= [[a(ih) = wa] - [6GIK) = ]| (4)

where p, and p, are the means of signals a(¢) and b(t). Then the
total distance D,, between signals a(¢) and b(¢) is defined by the
following dynamic programming equations:

estimated in terms of node operations which can be linked directly
to transformation of the peaks and valleys.

Four types of operations on tree nodes are defined for trans-
forming one tree into another. The minimum number of these op-
erations is used as a dissimilarity measure. The operations are:
father—son splitting and merging, and brother-brother splitting and
merging. For skeletal trees, a father-son split or merge corre-
sponds to the growing or shortening of a peak by one quantization

Dy, =g(1,J) (5)
if § = 0 then
[ g(i,j—1)
g(i,j)=min | g(i — 1,j — 1) | +d(i,j) (6A)
;_g(i—l’j)
if § = 1/2 then
Tg(i~2,j—3)+d(i,j—2) +d(i,j— 1)
gli—1,j—2) +d(i,j - 1)
g(i,j)=min| g(i - 1,j—-1) +d(i, j) (6B)
gli—2,j— 1) +d(i ~ L))
| g(i—3,j~2)+d(i —2,j) +d(i—1,j)
if §$ = 1 then
[g(i—1,j—2) +d(i,j—1)
g(i,j)=min | g(i —1,j - 1) +d(i, j) (6C)
Lg(i—2,j—1)+d(i—1,j)
withj—I‘si—(I;J)sj+I‘ (7)
and g(1, 1) = d(1, 1). (8)

These equations respect the usual monotonicity, continuity, and
boundary conditions [6]. Also, T and S are, respectively, the win-
dow and slope constraints [6].

The time complexity of dynamic time warping is O (nm), where
n is the length (in sample points) of the reference signal and m is
the length of the test signal. This is true for a given slope condition.
Assuming that both signals are approximately the same length, the
complexity is O(n?). The window condition reduces the compu-
tational effort.

The distance measure between two sample points used by the
dynamic time warping algorithm is very sensitive to scale. How-
ever, an offset on the complete signal will not affect the result be-
cause the distance measure is centered around the means. With re-
spect to its invariance to timing fluctuations, the algorithm can
accept both linear and nonlinear transformations. This property is
controllable by the constraints on the warping function.

C. Skeletal Tree Matching

Tree matching is a method which estimates the distance between
two signals by the distance between their corresponding trees. The
tree representation of a waveform is a description of the succession
of peaks and valleys in the waveform and of their self-embedded
structure. In 1985, Cheng and Lu [9] introduced two new types of
trees, the skeletal tree and the complete tree. In this study, only

skeletal trees are considered. The distance between two trees is
interval. A brother-brother split or merge corresponds to the deep-
ening or shallowing of a valley by one quantization interval. The
algorithm to find the minimal number of operations is given in [10].

The time complexity of the tree matching algorithm is O (nM?),
where n is the number of nodes in the reference tree and M is the
size of a matching table used to accumulate the best results during
the processing of the test tree. In practice, M is usually chosen
proportional to », and thus the complexity is O(n*). The size of
the skeletal tree is proportional to the number of quantization levels
multiplied by the number of peaks in the signal.

The tree matching algorithm when used with skeletal trees does
not vary at all with the timing fluctuations of signers. Indeed, the
skeletal tree representation contains only the sequence of peaks,
their self-embedding structure and their amplitude. The duration of
the peaks is not taken into account.

Regarding the effect of scale and offset on the input signals, skel-
etal tree matching is not invariant to either, but can adapt easily
and without great penalty to a local or global offset. The way the
algorithm measures the distance between two signals is like count-
ing the number of elementary deformations of peaks and valleys
necessary to transform one signal into the other, and this makes it
a very attractive paradigm.
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IV. EXPERIMENTAL RESULTS
A. First Criterion: Verification Errors

Algorithm performance is evaluated by verification error, exe-
cution time and number of parameters. In Section II, an experiment
was defined as 1 reference signal compared to 2T test signals. Thus,
for each experiment a classification error rate can be observed. By
replicating this experimental design K times for one type of signal,
the effect of the reference signal can be eliminated by blocking this
variable and conducting an analysis of variance. Based on total
processing time considerations and on the number of signers in the
database, T = K = 30 was chosen. It was further decided that each
replication of the experimental design would represent a different
signer (reference signals were chosen from different signers) so that
a wider range of variations between individuals could be consid-
ered.

To minimize the effect of algorithm implementation on its exe-
cution speed, all of the programming was carried out by the same
person. Tree matching was given particular attention because of its
time complexity.

Each algorithm has a parameter set: the region length and the
maximum allowed time lag for regional correlation, the window
length and the slope constraint for dynamic time warping and the
quantization step for skeletal tree matching. For the first simula-
tion, the parameters were chosen so as not to impose severe limi-
tations on the timing adaptation of the algorithms. The length of
the regions in regional correlation was fixed at 0.7 second as in [5].
The maximum time lag permitted was +25% of the longest region.
The window length for dynamic time warping was also fixed at
+25% of the longest signal. No slope constraint was imposed on
the warping function (S = 0). The quantization interval for the
skeletal tree was set at 1 mm for the position signals. This reso-
lution is considered to be coarse, but acceptable considering the
time complexity of the tree matching algorithm and the size of the
skeletal tree (proportional to the number of quantization steps).

Fig. 1 shows the total number of errors (type I + type II) for
each of the 30 experiments in the case of the position signals of
normal signatures. Table I gives the complete average results (in
%) for each script and signal type. The reader should remember
that these results have only relative significance. No effort has been
made to minimize the error rates by choosing the best references
or by any other method. The object of this first simulation was to
find out whether or not one algorithm was significantly better than
the others.

As can be seen from Fig. 1, although the mean results in Table
1 are somewhat different, individual results of the various experi-
ments show considerable fluctuation. To study these differences
more precisely, a variance analysis was conducted with the follow-
ing model [14]:

yi=n+7+8 +¢ 9)

where y;; is the observed result for the ith algorithm and jth exper-
iment, 7 is the general average, 7, is the algorithm effect, ; is the
effect of the experiment, and ¢; is the error of the model. This
model permits the study of the algorithms while removing the effect
of the references. It was validated by testing the underlying as-
sumptions: linearity and additivity. Residuals were found to have
zero mean but with a variance proportional to the estimated values.
To stabilize the variance, the following transformation was used
[14]:

x=sin”! [(y/27)'") (10)

where x is a new metric for the observation y (27T is the number of
signal comparisons for one experiment). This transformation has
whitened the residuals sufficiently to allow the variance analysis to
be conducted.

Let H; be the null hypothesis, i.e., the average performances of
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Fig. 1. Experimental results for signatures and position signals.

TABLE I
AVERAGE ERROR RATES FOR THE THREE ALGORITHMS (IN %)

signatures passwords|initials

x Y Ve |l vy | 8|8y x y X y

Regional correlation| 5.2 4.9] 7.0 8.0{10.0]10.5] 9.3| 7.2} 9.0| 7.6

Dynamic Time Warpinglll11.6] 3.0| 6.2] 4.0{16.7|12.2|18.6] 5.6 14.3]|10.9

Tree Matching 5.7f 4.2] 6.7| 3.3|13.2|11.3[16.6| 7.4|16.3[13.1

the three algorithms are equal, let S2 be the variance between al-
gorithms (variance of 7;) and let § 2 be the variance of the residuals
(variance of ¢;). Then, based on the additive model of (9) (after
transformation) and Fisher’s randomization theory, H, can be tested
from the ratio $2/S? which has an F distribution with 2 degrees of
freedom associated with the algorithms and 58 with the residuals.

Table II gives the results of the variance analysis for the various
signal and script types. The row P (F) gives the probability for the
ratio S2/52 under the null hypothesis. Fig. 2 illustrates the average
performances in Table I with an histogram. The cases where sig-
nificant differences (P(F) < 2%) between the algorithms have
been observed are indicated by an arrow.

For y(t), v,(t), and a,(1) of a signature, the null hypothesis
cannot be rejected. If real and consistent differences do exist, they
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TABLE 11

RESULTS OF THE VARIANCE ANALYSIS
signatures passwordsj initials
X y Vg vy a, a, X y X y
sa? 495| 119| 126| 464| 339]13.3{ 610 118| 522| 255
sr? S1L | 67 [71.9155.1(78.8(73.2{ 40 | 40 | 45 | 74
sa?/sr? |l 9.7| 1.8| 1.8| 8.4f 4.3| 0.2{15.3] 3.0{11.6| 3.4
P(F) [i<.1%| 17%| 17%{<.1%|1.8%| 82%|<.1%]5.8%|<.1%[4.0%

TABLE III
AVERAGE COMPUTATION TIMES FOR ONE SIGNAL COMPARISON (IN
SECONDS)
Regional Dynamic Time Tree
Correlation Warping Matching
signatures 0.31 (1) 1.4 (4.6) 7.5 (24)
passwords 0.15 (1) 0.38 (2.5) 0.64 (4.3)
initials 0.10 (1) 0.18 (1.7) 0.24 (2.4)

. Total error (%)

£Z7 Dynamic Time Warping

Tree Matching

v

|
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20 ‘
15
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signatures

passwords initials

Fig. 2. Average results for the three algorithms.

have not been observed. The cases of y(t) signals of passwords
and initials are borderline. Small differences probably do exist but
they have not been clearly observed.

Looking at the histogram in Fig. 2, it is possible to make the
following observations in terms of the error rate criterion:

1) For x(t) signals, whatever the script type, regional correla-
tion performs either as well as or better than the others. Dynamic
time warping performs badly for all script types. This suggests that
it cannot handle the moving average which is usually encountered
for x (¢) signals. Tree matching did almost as well as regional cor-
relation for signatures but its relative performance deteriorated with
passwords and initials. This suggests that the algorithm needs a
minimum of information (peaks and valleys) to be discriminating.

2) For y(t) signals, whatever the script type, no significant dif-
ferences were observed between the three algorithms.

3) For cases where significant differences were observed, re-
gional correlation came first in four out of five cases (x(r) for sig-
natures, passwords and initials, and a,(¢) for signatures) but last
(by far) in the fifth (v,(¢) of signatures). Dynamic time warping
never came first but was close to tree matching for v, () signals of
signatures. Tree matching came first for v,(¢), and close to re-
gional correlation for x (¢), signals of signatures.

4) For the position representation space, whatever the script
type, the algorithms lead to lower error rates with signals measured
along the vertical axis.

5) All algorithms are less discriminant with acceleration signals
of normal signatures.

B. Second Criterion: Computation Time

Table III gives the average computation time for one signal com-
parison by each of the three algorithms (the numbers in parentheses
are relative to regional correlation). The algorithms were coded in
Pascal and the simulations were run on an IBM 4381 computer.

This table shows that important differences exist in the time
needed to compare two signals with the three algorithms. For the
signatures used in the experiments, it took, on average, 24 times
longer to compare two signals with skeletal tree matching than with
regional correlation, and for dynamic time warping, it took 4.6
times longer. The effect of the time complexity of the algorithms
is clearly visible when looking at the results for the passwords and
initials. Indeed, signatures are generally longer than passwords
which are themselves longer than initials. For initials, the ratio for
tree matching drops to 2.4, and to 1.7 for dynamic time warping.

Regional correlation (which has the smallest time complexity) is
thus the fastest algorithm. Dynamic time warping is somewhat
slower, however several hardware architectures for VLSI imple-
mentation of the algorithms have been developed that offer solu-
tions to this problem. Tree matching is very slow both in absolute
and in relative terms. Tree matching requires an application where
processing time is not an issue.

C. Third Criterion: Number and Sensitivity of Parameters

The effect of the permitted time lags over the regional correla-
tion algorithm is not critical. Fig. 3 compares the results of simu-
lations for maximum time lags of +£20% and +30% with the pre-
vious results (+25%) for position signals of normal signatures.
Under +20%, the permitted time lags are too restrictive and nor-
mal time shifts in the signals can no longer be compensated.

Region length is a more important parameter, as shown in Fig.
4. When the regions are too short and need to be shifted to match
correctly, the overlap between the regions becomes small and,
hence, a relatively greater portion of the signal is lost. Simulations
have shown that for the x(7) signals, the region length chosen in
this study was appropriate, but for y(¢) signals the correct region
length would have been around 1.5 seconds. Region length could
be a possible explanation for the bad performance observed in the



IEEE TRANSACTIONS ON PATTERN ANALYSIS

v total error (%)

AND MACHINE INTELLIGENCE. VOL.

12, NO. 7. JULY 1990

6r +
(=3 -
5t £ o
+ .
4|
3 -
2r & x signal
1+ + -y signal
0 N . . s
15 20 25 30 35

permitted time lag (+-%)

Fig. 3. Total error versus permitted time lags for regional correlation with

region length of 0.7 seconds.

total error (%)
10

a8+

8- x signal

+ 'y signal

2 " . 4

0 L " "
0 0.5 1

25 3

region length (sec)

Fig. 4. Total error versus region length for regional correlation with per-
mitted time lags of +25%.

4 total error (%)

a
12+
. . a a
10f “
8r 8- x signal
13 +- y signal
+
4t
+ i + +
2F
0 , . . N . A s
0 5 10 15 20 25 30 35

window length (+-%)

Fig. 5. Total error versus window length for dynamic time warping with
no slope constraint.

case of v,(r) signature signals. The sensitivity of the algorithm
over this parameter is an undesirable characteristic since it suggests
the need for user-dependent fine-tuning.

For dynamic time warping, the effect of the window length, as
in the time lags of regional correlation, is not important. Results
of simulations for window lengths of +5% to +30% on position
signals of signatures are illustrated in Fig. 5. They show that a
value around +15% is optimal.

Up to now, the residual distance obtained by the dynamic time
warping algorithm has been divided by the length of the longest of
the reference or test signals to normalize the result. Indeed, as op-
posed to regional correlation which has a result in the range [0, 1],
the result of dynamic time warping is usually proportional to the
length of the signals because every sample point is considered in
the warping function. The logic behind the normalization by the

longest signal was that the minimum number of points in the warp-
ing function corresponded to the number of points in the longest
signal because of the boundary condition. As shown in Fig. 6, di-
viding by the length of the reference is much better than not divid-
ing by anything or dividing by the longest. This result can be ex-
plained by the fact that with the longest signal approach, forged
signals longer than the reference tend to reduce the measured dis-
tance and thus reduce its discriminating power. Using the length
of the reference is a safer approach because authentic signals are
more stable, although those longer than the reference will be pen-
alized compared with those that are shorter.

The slope constraint on the warping function is time-consuming.
The time penalty is proportional to the number of terms in (6) which
changes with the slope constraint. Fig. 7 gives simulation results
for § = 1/2 and § = 1. They show that a small constraint on the
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Fig. 6. Total error versus normalization method for dynamic time warping
with window length of +15% and no slope constraint.

total error (%)

10 o
8 -
e a
6 F
8 x signal
s + 'y signal
2 -
+ +
+
0 R L A S
0 1/2 1 3/2
slope constraint (n/m)
Fig. 7. Total error versus slope constraint for dynamic time warping with

window length of +£15% and normalized by the reference.

slope of the warping function (S = 1/2) may be beneficial on a
relative basis, but this is not an overwhelming factor.

The resolution of the skeletal tree determines the minimum size
of peaks considered in the matching process. Although a smaller
step should help discriminate between authentic and forged signals,
the cubic complexity of the algorithm in conjunction with the linear
relation between resolution step and tree size rapidly creates an
overwhelming problem. For example, doubling the resolution
would require approximately 60 hours of CPU time on the 4381 to
execute a complete run of the experimental design on signatures.
Also, small peaks may not be very stable which suggests that this
resolution should not surpass the size of unstable peaks. For these
reasons, skeletal tree matching was not fine-tuned.

V. CONCLUSION

This correspondence has compared three signal matching algo-
rithms in the context of signature verification. These algorithms all
employ very different methods to measure either the similarity or
distance between two signals. Algorithm performances were eval-
uated in terms of classification error rates, execution time, and pa-
rameter sensitivity. In terms of classification error rates, experi-
mental results have shown that no algorithm out-performs the others
in all circumstances. Significant differences between the algorithms
were observed in five cases: x(¢), v,(¢), and a,(¢) signals of sig-
natures, and x(¢) signals of both handwritten passwords and ini-
tials. Of the five cases, regional correlation was first four times and
skeletal tree matching once. Both dynamic time warping and skel-
etal tree matching were a close second once.

In terms of execution time, regional correlation is on average
4.6 times faster than dynamic time warping which, itself, is 5 times
faster than skeletal tree matching.

In terms of parameter sensitivity, regional correlation has one

critical parameter: region length. For the particular case of y(t)
signature signals, its fine-tuning reduced the error rate by half. The
allowed time lags can be chosen around +25% of the longest re-
gion. Dynamic time warping has no critical parameter. Window
length should be around + 15% and slope constraint should be 1/2.
Results have shown that the residual distance should be normalized
by the length of the reference signal. The parameter of skeletal tree
matching, the resolution step, is critical to execution time.

Finally, it may be concluded that for an on-line signature veri-
fication system based on signals extracted by a digitizer, either po-
sition or velocity signals of normal signatures should be consid-
ered. If only position signals are used, Regional Correlation could
be used on x(¢) and y (), if short processing time is required. Oth-
erwise, skeletal tree matching remains a good candidate. Dynamic
tree warping should only be used on y(#) signals. In the velocity
domain, the dynamic time warping algorithm is preferred because
its parameters are less critical than those of regional correlation.
Skeletal tree matching is still a good candiate if processing time is
not an issue.
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