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Abstract

On-line handwritten scripts consist of sequences of components that are pen

tip traces from pen-down to pen-up positions. This paper presents a segmentation

and reconstruction procedure which segments components of a script into sequences

of static strokes, and then reconstructs the script from these sequences. The seg-

mentation is based on the extrema of curvature and in
ection points in individual

components. The static strokes are derived from the delta log-normal model of

handwriting generation and are used in component representation and reconstruc-

tion. The performance of the procedure is measured in terms of root mean square

reconstruction error and data compression rate.

1 Introduction

On-line handwritten script segmentation is an active research topic since it promises

a structural description for the underlying shape.(1�6;8;11;13;15) An on-line handwritten

�This work will appear in Pattern Recognition, probably late 1997 or early 1998. It was supported in
part by NSERC grant OGP0155389 to M. Parizeau and in part by NSERC grant OGP00915 and FCAR
grant ER-1220 to R. Plamondon.

yXiaolin Li was with the D�epartement de g�enie �electrique et de g�enie informatique, Universit�e Laval.
He is now with the D�epartement de g�enie �electrique et de g�enie informatique, �Ecole Polytechnique de
Montr�eal, Montr�eal (Qu�ebec), Canada H3C 3A7. E-mail: xiaolin@scribens.polymtl.ca

zMarc Parizeau is with the D�epartement de g�enie �electrique et de g�enie informatique, Universit�e Laval,
St-Foy (Qu�ebec), Canada, G1K 7P4. E-mail: parizeau@gel.ulaval.ca

xR�ejean Plamondon is with the D�epartement de g�enie �electrique et de g�enie informatique, �Ecole
Polytechnique de Montr�eal, Montr�eal (Qu�ebec), Canada H3C 3A7. E-mail: rejean@scribens.polymtl.ca



2 Li, Parizeau & Plamondon: Segmentation and Reconstruction of On-line. . .

script captured by the digitizing tablet consists of sequences of components that are

pen tip traces from pen-down to pen-up positions. As a component can be segmented

into a sequence of primitives at its characteristic points, a script can be described by

sequences of attributed pattern primitives. This kind of representation can be used for

data compression,(5) ink data search,(11) and on-line recognition.(1�3;8;10;13;16)

The de�nition and extraction of characteristic points within a component is very

diverse in di�erent systems. For example, some systems use the minima of curvilinear

velocity to characterize the pen-tip trace,(1;3) some systems use the local extrema of X

and Y coordinates as the characteristic points,(5;11;13) and some systems use the geomet-

ric parameters(6) or the extrema of curvature(8) to segment the component. In general,

di�erent de�nition and extraction leads to a di�erent primitive representation.

With the electronic ink data increasing dramatically in some applications such as

electronic ink search within a large database,(11) the issue of ink data compression and

reconstruction has arisen recently. In this paper we present a pragmatic approach derived

from the delta log-normal model of handwriting generation(4;12;14;17) for on-line handwrit-

ten script segmentation and reconstruction. The procedure detects the local extrema of

curvature in individual components. It uses the pen tip traces on the x�y plane for cur-

vature analysis. Unlike the techniques for stroke corner detection based on eight-neighbor

chain code,(8) this technique uses interpolated boundary points to compute the sequence

of changes in angles. The extrema of curvature are detected based on this information. In

our procedure, each component of a script is segmented into a sequence of static strokes

at its landmark points (i.e. pen-down and pen-up points, local extrema of curvature,

in
ection points, and middle points of circular shape). Then the script is reconstructed

based on this representation. The performance of the procedure is measured in terms of

root mean square reconstruction error and data compression rate.

The remainder of this paper is organized as follows. Section 2 summarizes the delta

log-normal model and some of its properties. Section 3 presents our algorithms for land-

mark point detection and script segmentation. Section 4 describes script reconstruction

using sequences of static strokes. Section 5 presents our experimental results concerning
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not only script segmentation and reconstruction but also the root mean square recon-

struction error and data compression rate. Finally, section 6 concludes this paper.

2 Delta Log-Normal Model

2.1 Simple stroke

Delta log-normal model is a powerful tool in analyzing rapid human movements.(7;15) It

describes a neuromuscular synergy in terms of the agonist and antagonist systems involved

in the production of these movements.(14) With respect to handwriting generation, the

movement of a simple stroke is controlled by velocity.(4;15) v�(t), the magnitude of that

velocity can be described analytically by:

v�(t) = D1�(t; t0; �1; �
2
1)�D2�(t; t0; �2; �

2
2) (1)

where

�(t; t0; �; �
2) =

1

�
p
2�(t� t0)

exp

(
� [ln(t � t0)� �]2

2�2

)
t0 � t (2)

is a log-normal function. In the above equations, t0 represents the activation time, Di are

the amplitude of impulse commands, �i are the mean time delay, and �i are the response

time of the agonist and antagonist systems, respectively, on a logarithmic scale axis.

The angular direction of the velocity can be expressed as

�(t) = �0 +

Z t

t0

c0v�(u)du (3)

where �0 is the initial direction, c0 is a constant representing the curvature of the stroke,

and the derivative of �(t) is referred to as the angular velocity:

v�(t) = c0v�(t) (4)

Thus, the trace �v of the stroke is characterized by a vector:

�v(t� t0) =< v�(t); �(t) >; t0 � t (5)
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From the above de�nition, it readily follows that given v�(t), the curvature along

a stroke is time invariant. Thus, the static shape of the stroke is an arc, and can be

characterized by:

S =< �; c;D > (6)

where � = �0 is the initial angular direction, c = c0 is the constant curvature, and

D = D1 � D2 is the arc length. We call this a static stroke because there is no time

variable in this expression.

2.2 Vectorial summation of simple strokes

Now consider a complex movement. Let �v(1)(t � t
(1)
0 )�v(2)(t � t

(2)
0 ) � � � �v(n)(t � t

(n)
0 ) be an

n-stroke sequence, where the ith stroke is characterized by:

�v(i)(t� t
(i)
0 ) =< v

(i)
� (t); �(i)(t) >; t

(i)
0 � t (7)

where t
(i)
0 is the activation time, v

(i)
� (t) is the magnitude, and �(i)(t) is the angular position.

The movement of a component can be considered to be the vectorial summation of the n

strokes in the time domain:

�v(t) =
nX
i=1

�v(i)(t� t
(i)
0 ) (8)

In the above summation, each stroke in the sequence has an e�ect on all subsequent

strokes. Since the n strokes are superimposed on one another, it is very di�cult to

recover them given only the summation observation �v(t). However, if one assumes that

the magnitude of each stroke decreases very fast, i.e.

v
(i)
� (t) � 0 when T (i) < t (9)

and that for 1 < i < n,

t
(i)
0 < T (i�1) < t

(i+1)
0 < T (i) (10)

then it follows that
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1. when T (i�1) � t < t
(i+1)
0

�v(t) � �v(i)(t� t
(i)
0 )

c(t) � c
(i)
0

(11)

c(t) is approximately time invariant.

2. when t
(i)
0 � t < T (i�1)

�v(t) = < v�(t); �(t) >

� �v(i�1)(t� t
(i�1)
0 ) + �v(i)(t� t

(i)
0 ) (12)

where

v�(t) � v
(i�1)(i)
� (t)

= f[v(i�1)� (t)]2 + [v
(i)
� (t)]2 + 2v

(i�1)
� (t)v

(i)
� (t) cos[�(i�1)(t)� �(i)(t)]g 1

2 (13)

�(t) � �(i�1)(i)(t)

= tan�1

2
4 v(i�1)� (t) sin �(i�1)(t) + v

(i)
� (t) sin �(i)(t)

v
(i�1)
� (t) cos �(i�1)(t) + v

(i)
� (t) cos �(i)(t)

3
5 (14)

and the curvature satis�es

c(t) =
d�(t)

d�(t)

� d�(i�1)(i)(t)

d�(i�1)(i)(t)
(15)

where

�(i�1)(i)(t) = �(i�1)(t
(i)
0 ) +

Z t

t
(i)

0

v
(i�1)(i)
� (u)du (16)

Thus, c(t) is time variant.

In the following sections, we will describe a pragmatic segmentation and reconstruc-

tion procedure based on the above description and assumption, using the static curvature

information.
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3 Script Segmentation

3.1 Landmark points

Landmark points refer to points of the following categories in a component: 1) pen-down

and pen-up points, 2) local extrema of curvature, and 3) in
ection points of curvature.

3.1.1 Extrema of curvature

In di�erential calculus, the curvature c at a point p on a continuous plane curve C is

de�ned as

c = lim
�s!0

��

�s
(17)

where s is the distance to the point p along the curve and �� is the change in the angles

of the tangents to the curve at distance s and s+�s, respectively. Note that the direction

of the tangent line corresponds to the direction of the velocity. Since the sign of curvature

is related to the curve direction, one can de�ne convex and concave curvature to re
ect

this relationship:

� c is convex if and only if c < 0;

� c is concave if and only if c > 0.

In the light of the above de�nitions, the direction of the tangent line always turns

clockwise with convex curvature; while the direction of the tangent line always turns

counterclockwise with concave curvature.

In practical cases, it is di�cult to calculate the above limit when the analytical

representation of the curve is not available. However, by using a small unity interval

�s = 1 along the curve, the curvature can be approximated as c = ��. The above idea

can be realized by interpolating data points along a component1 such that C = p1p2 � � � pL,
1This is also referred to spatial sampling.
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where d(pl; pl+1) = 1, 1 � l < L. In our case, the curvature cl at point pl can be computed

as

cl = ��l (18)

using the unity interval �s = 1.

To estimate the above curvature, we compute the sequence of angles from point to

point:

A = �1�2 � � ��L (19)

where �l 2 [�180�; 180�] is the angle of the tangent line at pl, which is estimated as

�l = tan�1
"
yl+1 � yl

xl+1 � xl

#
(20)

In the light of A, we can obtain the sequence of changes in angles:

�A = ��1��2 � � ���L (21)

where

��l = (�l � �l�1) mod 360� (22)

Equation (22) guarantees that ��l 2 [�180�; 180�]. In the extreme cases that �l �
�l�1 = �180�, ��l has the same sign as that of ��l�1, since the original signal is supposed

to be continuous.

It is obvious that the above sequence contains the curvature signal mixed with digiti-

zation and quantization noise. The in
uence of the noise can be suppressed by convolving

the sequence �A with an appropriate �lter G in the spatial domain: �A� = �A�G. The
curvature is then estimated based on the �ltered signal:

cl = ���l (23)

After the above signal is obtained, we de�ne a local extreme of curvature based on

signal intensity using the following measures:



8 Li, Parizeau & Plamondon: Segmentation and Reconstruction of On-line. . .

� signal intensity:

I =

vuut 1

L

LX
l=1

���l ����l (24)

� threshold of signal intensity:

T = kSI + kL (25)

where kS is the slope coe�cient and kL gives the lowest threshold value.

Using the above measures, we are now in a position to de�ne the local extrema of

curvature along a discrete component:

� If ���l is a local minimum such that ���l � �T , then pl is a point of local minimum

of curvature.

� If ���l is a local maximum such that T � ���l , then pl is a point of local maximum

of curvature.

All the above points constitute the points of local extrema of curvature in a compo-

nent.

3.1.2 In
ection points

An in
ection point is de�ned as the zero crossing point of curvature between two consec-

utive extrema of curvature if the convex-concave property of these extrema opposite to

each other, and none of them display curvature discontinuity.

3.1.3 Special consideration

In some cases a portion of a component between two consecutive landmark points may

consist of some circular parts. For example, sometimes one may write a character 'o' like

a perfect circle and sometimes one may write an 'S' so smooth that the curvature along its
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trace is almost a constant. In the above cases there are no extrema of curvature detectable.

Under such circumstances we insert a middle point as a special landmark point. To avoid

uncertainty in determining the center angle of an arc (see following subsection), the above

insertion is performed recursively until all arc segments are less than a semi-circle.

3.2 Component segmentation

We segment a component into a sequence of attributed strokes (arcs) at its landmark

points such that

C = S1S2 � � �SN�1 (26)

where Si =< �i; ci; Di >, i = 1; 2; � � � ; N � 1, and N is the number of landmark points in

the component. Two stroke categories are de�ned here for computational reason:

1) straight line segments2

2) arcs

For each portion of the component corresponding to stroke Si, we use three points

p0(x0; y0), pm(xm; ym), and p1(x1; y1) (p0 and p1 are landmark points and pm is the middle

point of that portion) to classify the portion and compute the stroke attribute:

�1 = tan�1
�
ym � y0

xm � x0

�

�2 = tan�1
�
y1 � ym

x1 � xm

� (27)

� Si is a line segment if �1 = �2.

In this case, the stroke attribute is computed as:

�i = �1
ci = 0

Di = [(x1 � x0)
2 + (y1 � y0)

2]
1
2

(28)

2A straight line segment can be regarded as an arc where the curvature of the arc tends to zero.
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y

x�r

�

l

(x0; y0)

(x1; y1)

(xm; ym)

(xc; yc)

�l

�i

Di

ri

Figure 1: Computing arc attribute

� Si is an arc if �1 6= �2.

In this case, the stroke attribute is computed by the following steps: (See Figure 1):

1. determine radius ri and center oi(xc; yc) by solving the following equations:

ri = [(x0 � xc)
2 + (y0 � yc)

2]
1
2

2(xm � x0)xc + 2(ym � y0)yc = x2m � x20 + y2m � y20
2(x1 � xm)xc + 2(y1 � ym)yc = x21 � x2m + y21 � y2m

(29)

2. determine relevant parameters l, �, �r, �l, and �:

l = [(x1 � x0)
2 + (y1 � y0)

2]
1
2

� = 2 sin�1
"
l

2ri

# (30)

�r = tan�1
�
y0 � yc

x0 � xc

�

�l = tan�1
�
y1 � y0

x1 � x0

� (31)

� = (�l � �r) mod 360� (32)
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3. determine �i, ci, and Di:

�i =

8>>><
>>>:

�
�1 +

�

2

�
mod 360� � < 0

�
�1 �

�

2

�
mod 360� � � 0

(33)

ci =

8>>><
>>>:
�1

r
� < 0

1

r
� � 0

(34)

Di = �ri (35)

Now that each component of a script has been segmented into a sequence of static

strokes, we can store the pen-down point and the stroke sequence of each component.

The script can be reconstructed component by component based on these sequences.

4 Script Reconstruction

4.1 Component reconstruction

A component can be reconstructed stroke by stroke, starting from its pen-down position.

Given a stroke Si =< �i; ci; Di > and starting point p0(x0; y0), the trace of the stroke can

be computed as follows.

� straight line segment reconstruction:

x = x0 + d cos �i
y = y0 + d sin �i

(36)

where d 2 [0; Di].

� arc reconstruction (see Figure 1):
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1. determine ri, �, and oi(xc; yc):

ri =
1

jcij
(37)

� =
Di

ri
(38)

xc = x0 � ri cos �i
yc = y0 � ri sin �i

(39)

2. reconstruction:

x = xc + ri cos(� mod 360�)

y = yc + ri sin(� mod 360�)
(40)

where

� 2 [�r � �; �r] ci < 0

� 2 [�r; �r + �] ci > 0
(41)

where

�r = tan�1
�
y0 � yc

x0 � xc

�
(42)

The end point of a current stroke can be easily computed. Then it will be passed to

the next stroke as a starting point.

4.2 Root mean square reconstruction error

Let P = p1p2 � � � pK be a component segment associated with a static stroke Si. We

de�ne a point sequence P 0 = p01p
0

2 � � � p0K sampled from Si that best correspond to P in

the following manner:

1. case of straight line segment

In this case, we locate P 0 2 Si such that d(pk; p
0

k) = d(pk; Si), where d(pk; Si) denotes

Euclidean perpendicular distance between point pk and line segment Si.
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2. case of arc

In this case, we locate P 0 2 Si such that p0k is the intersection of arc Si and the line

segment pkoi, where oi(xc; yc) is the center of Si.

Note that in either case, we always have p1 = p01 and pK = p0K as a result from our

component segmentation.

Based on the above description, we can concatenate point sequences stroke by stroke

and component by component. Then we get two point sequences that correspond to each

other at script level.

Let P = p1p2 � � �pM be the point sequence of a script and P 0 = p01p
0

2 � � � p0M be its

correspondent in the reconstructed traces, the root mean square reconstruction error at

script level is de�ned as:

rmse =
1

H

vuut 1

M

MX
m=1

d2(pm; p0m) (43)

where H is the normalized height of the script. Thus, the error can be expressed in

percentage compared with H.

5 Experimental Results

So far we have described our procedure for on-line handwritten script segmentation and

reconstruction. The results of our experiment using this technique are summarized in

Tables 1 and 2 and are discussed in details in this section.

The experimental results shown in this section were obtained with four di�erent data

sets. The �rst data set contains 55 French words written by one person. The second data

set contains 2600 characters (a-z) written by 10 di�erent people (10 samples per character

class per person). The third and fourth data sets named \unipen1a" and \unipen1c"

are from \train r01 v05", the �fth release of UNIPEN training data, and contain 6519

digits (0-9) and 28799 characters (a-z), respectively. Other details concerning number of
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points

data set scripts components data extreme in
ection middle strokes

French words 55 170 10469 956 113 12 1251

Characters 2600 3050 89099 8788 781 185 12804

Unipen1a 6519 8181 361318 17862 2628 339 29010

Unipen1c 28799 35176 1144547 73590 7058 1796 117620

Table 1: Segmentation statistics

rmse bytes compression

data set max min avg original compressed rate

French words 2.38% 0.70% 1.20% 41876 16372 60.90%

Characters 8.21% 0.09% 1.55% 356396 178048 50.04%

Unipen1a 11.65% 0.00% 1.32% 1445272 413568 71.38%

Unipen1c 9.22% 0.00% 1.45% 4578188 1692848 63.02%

Table 2: Reconstruction statistics

components and number of data points (coordinate data) of each data set are given in

Table 1.

In our experiment, the �rst data set (55 French words) and the second data set (2600

a-z characters) were used for tuning the parameters of the segmentation algorithm, while

the third data set (unipen1a) and the forth data set (unipen1c) were used for testing.

The parameters of the segmentation algorithm include: 1) the normalized script height,

2) the passband of the �lter, and 3) the coe�cients kS and kL related to the threshold of

signal intensity. They are discussed in the following subsection.

5.1 Script segmentation and reconstruction

Before applying this technique, each of these scripts was empirically scaled at 80 unit

height (H = 80) with the width kept proportional to its original size. This kind of

normalization is necessary because curvature is a scale dependent measure. The normal-

ization value of 80 was found to be su�cient to maintain the correlation that is predicted
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by the handwriting generation model between the extrema of curvature, the maxima of

angular velocity and the minima of curvilinear velocity.(15;17)

After the normalization, the data points of each component were smoothed, and then

they were interpolated. For each component in all the above cases, �A, the sequence of

changes in angles was iteratively convolved with a Gaussian function G twice3 using the

following equations:

���l =
1

W

l+16X
s=l�16

ws��s (44)

where

ws = e�[0:2(s�l)]
2

W =
l+16X

s=l�16

ws

(45)

The bandwidth of the �lter4 is 0.1665 when �s = 1, where �s is the spatial sampling

interval.

In our experiment, the extreme point detection was carried out with two steps: a

main step and a supplemental step. At the main step, the slope coe�cient and the bound

related to thresholding were set as kS = 0:125 and kL = 2, respectively, and extrema

corresponding to that threshold were detected. At the supplemental step, all segments

that resulted from the main step were checked, and those long segments that stretched in

the x direction (such as segments that looked like 
at sine wave) were further processed.

As the curvature signal was very weak along such segments, the threshold of extrema was

tuned down by setting kS = 0:0625 and kL = 1.

The segmentation statistics concerning the four data sets are shown in Table 1.

Figures 2 to 6 show some examples in this experiment.

3In the light of convolution theorem, performing �A(s) � G(s) � G(s) in the time-spatial domain is
equivalent to performing �A(!)G2(!) in the frequency domain, where �A(!) and G(!) are the Fourier
transforms of �A(s) and G(s), respectively. G2(!) has a lower passband but a smaller truncation e�ect
than that of G(!) on �A(!) when �A(s) and G(s) are digitized.

4This is referred to the angular frequency !c that satis�es G
2(!c) = 1=

p
2.
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The script in Figure 2 (a) consists of 2 components. Its landmark points are shown in

Figure 2 (b) with 1) the points of local extrema of curvature marked by black circles, 2) the

in
ection points marked by empty circles. For simplicity the pen-down and pen-up points

are not marked by any signs because they are easily located. The original curvature

signal pro�le �A and the �ltered curvature signal pro�le �A� of each component are

displayed in Figure 2 (d) and (e), respectively. The original curvature signal pro�le �A is

an impulse-like sequence but the �ltered curvature signal pro�le �A� has clear peaks and

valleys. From Figure 2 (e) one can clearly see that the �rst component has 15 extrema

(marked by crosses) and 3 in
ection points (marked by Ts), while the second one has

6 extrema and 2 in
ection points. This script was segmented into 2 sequences of static

strokes. The �rst sequence contains 19 strokes, and the second contains 9 strokes. The

reconstructed script using these sequences are shown in Figure 2 (c). The rmse is 1.02

percent compared with the normalized height of the script.

Figures 3 to 4 show a few more examples of the French word segmentation and

reconstruction. In Figure 3 there are 10 French words with their landmark points displayed

(the middle points are marked by empty squares where appropriate). These words were

segmented and then reconstructed. The reconstruction results are shown in Figure 4. In

Figure 4 the rmse of each word is also displayed.

Figure 5 shows some examples concerning the individual character segmentation.

In Figure 5 there are 26 characters (a-z) with their landmark points displayed. These

characters were segmented and then reconstructed in a similar manner as dealing with

the French words. The reconstruction results are shown in Figure 6.

In our experiment, the root mean square reconstruction error varied from character

to character and from word to word. The reconstruction statistics is shown in Table

2. with respect to the �rst data set, the minimum rmse was 0.70 percent, while the

maximum rmse was 2.38 percent. The average rmse was 1.20 percent. With respect

to the second data set, the minimum rmse was 0.09 percent, while the maximum rmse

was 8.21 percent. The average rmse was 1.55 percent. With respect to unipen1a, the

minimum rmse was 0 percent, while the maximum rmse was 11.65 percent. The average
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(a) Handwritten script

(b) Landmark points

(c) Reconstructed script (rmse = 1:02%)

180�

0�

�180�
(d) Original curvature signal pro�le �A

45�

0�

�45�
(e) Filtered curvature signal pro�le �A�

Figure 2: Example of script segmentation and reconstruction
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Figure 3: French word segmentation

rmse was 1.32 percent. With respect to unipen1c, the minimum rmse was 0 percent,

while the maximum rmse was 9.22 percent. The average rmse was 1.45 percent.

From Table 1 one may also see that in our experiment the middle points detected

were less than 2% of all landmark points. In other words, the pen-down and pen-up points

and the extrema of curvature and in
ection points were more than 98% of the case and

hence they played a key role in script segmentation and reconstruction.

5.2 Data compression rate

The 55 French words sampled by the digitizing tablet contain 170 components with 10469

data points. Since each point is represented by a pair of short integers (x; y), the data

points require a total number of 41876 (10469 � 2 � 2) bytes for storage. Using our

procedure for script segmentation and reconstruction, these words were segmented into

170 sequences with 1251 strokes. As each component has a pen-down point and each

stroke has 3 parameters and all these attributes are represented by 
oating numbers, the

segmented data require a total number of 16372 (170 � 2 � 4 + 1251 � 3 � 4) bytes for

storage. In this case, the data compression rate is (41876� 16372)=41876 = 60:90%.

On the other hand, the 2600 characters contain 3050 components with 89099 data
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1.47% 1.03%

1.06% 1.21% 0.94% 1.18%

1.10% 1.18% 1.52% 0.98%

Figure 4: French word reconstruction

points. These data points require a total number of 356396 bytes for storage. When these

characters were segmented into 3050 sequences with 12804 strokes, the segmented data

require a total number of 178048 bytes for storage. In this case, the data compression

rate is (356396� 178048)=356396 = 50:04%.

The data compression rates concerning unipen1a and unipen1c are given in Table 2.

From Table 2 one can see that unipen1a has the highest data compression rate 71:38%

but also the highest maximum rmse 11:65%. On the other hand, the data compression

rate from unipen1c is 63:02%. This is meaningful because it is the largest data set among

the four.

6 Conclusions

In this paper we have presented a procedure for on-line handwritten script segmentation

and reconstruction. The procedure detects the landmark points in individual components

and segments each component of a script into a sequence of static strokes. The static

strokes are derived from the delta log-normal model of handwriting generation.(4;17) The
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Figure 5: Individual character segmentation

2.09% 1.84% 0.80% 0.84% 1.02% 1.32% 1.32% 1.55% 0.71% 0.84%

0.99% 3.07% 1.56% 1.34% 1.07% 1.30% 0.91% 1.53% 1.26%

1.53% 1.54% 1.89% 1.08% 1.33% 0.68% 0.96%

Figure 6: Individual character reconstruction

script is then reconstructed from its stroke sequences. Meantime, the root mean square

reconstruction error and data compression rate are measured.

A segmentation and reconstruction experiment has been conducted upon four data

sets, the �rst one contains 55 French words, the second one contains 2600 characters, the

third one contains 6519 digits, while the fourth contains 28799 characters. With respect
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to these data sets, the average root mean square reconstruction error varied between 1.20

to 1.55 percent, while the data compression rate varied between 50.04 to 71.38 percent.

We have shown, through theoretical analysis and experimental results, that our pro-

cedure is accurate in locating extreme and in
ection point and e�cient in script seg-

mentation and reconstruction in terms of data compression rate and root mean square

reconstruction error. The limitation of our approach is that it is scale dependent and

hence it requires scale normalization.

As one possible application, our procedure can be used for on-line handwriting data

compression. The original handwritten script can be segmented and compressed, it then

can be reconstructed without losing its shape. As another possible application, the stroke

sequences resulting from the segmentation can form a basis for statistical or structural

pattern recognition.
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