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Abstract However, most of these systems deal with the seg-

mentation/recognition dilemma by, on the one hand, over-
This paper presents a new strategy for isolating handwritsegmentation of the scripts in smaller unit than characters
ten characters in cursive words without making an explicit dusually graphemes) and analysis of all possible segmenta-
priori segmentation of the script, and without imposing anyion paths, and, on the second hand, by imposing lexical con-
lexical or other linguistic constraints. Furthermore, this ap-straints in order to limit combinatorial explosion. The ob-
proach can be completely trained using data sets of isolatgelct of this paper is to present a somewhat different strategy
characters only. where no explicit a priori segmentation is made and where

The main idea behind this strategy is to have a windoWo lexical constraints are a priori imposed.

of attention moving around in the cursive word, searching
for instances of known characters. If one assumes that the L . . . -
current window contains some significant part of a charac-, _The main idea behln(_j this strategy, is to be able to ni-
ter, then the problem is to translate and scale the windO\}\'/al'Ze gwmdow of attention somewherg neara chargcter n
of attention in such a way that it converges to the bound? cursive word, ar!d have a segmentgtlon process fine tgne
ing box of that character. This process is implemented ughe position and size OT this W'”do".v in such a way that it
ing both adetectometwork and a set dbcatornetworks. ;earc_hes for the boundlng t_)ox of this charact_er_. _By repeat-
The detector network is responsible for recognizing whol&'9 this process ona sufficienty '?rge set of initial pomt;,
characters of any class and thus for stopping the iterativ@"® cou!d then bu'ld. a segmentat!on grgph for the cursive
process, whereas a locator network is assigned the task Prd Wh,'Ch could be interpreted using adjacency cqnstramts
recognizing the crucial parts of a given character class an 10], lexical knowledge, or bOth.' Itis ho.ped thgt using SL.J?h
producing the corresponding transformation parameters foft Strategy, a complete and flexible cursive script recognition

the window. The feasibility of this process is shown throug‘?lystem can be built, although no claims to such a system is

experiments using the UNIPEN database of on-line scriptsr.na_de n .th|s paper (work on th|s.|s stil und_er yvay). What 'S
claimed in this paper, however, is the feasibility of this new
segmentation strategy and that the underlying process can

i be trained automatically using only isolated characters.
1 Introduction y using only

The automatic recognition of on-line cursive scriptis a diffi-  In previous work, Suen et al. [9] have already demon-
cult pattern recognition problem[1, 2], mainly because of thetrated that handwritten alphanumeric characters are made
great variations encountered in different handwriting stylesip of crucial parts that tend to preserve the invariant char-
but also because of the so-called segmentation/recognitiaeteristics and exhibit the distinctive features of characters
dilemma where characters need both to be segmented beftiris our objective to exploit these crucial parts in order to
they can be recognized, and recognized before they can @eate a more flexible character segmentation/recognition al-
segmented. Many recognition systems have been desigrgafithm.

to tackle these difficulties using various methods and tech-

nigues. Some of the more recent works include the use of

neural networks [3, 4, 5], hidden markov models [6, 7] and The rest of this paper is organized as follows. First, Sec-
formal grammars [8]. tion 2 presents a global overview of our segmentation pro-

cess. Then, Section 3 to Section 6 describe in details each of

“This work was supported in part by NSERC and FCAR grants to Mits four comp.onents. '_:inaIIY= .experimental results are pre-
Parizeau and in part by an NSERC grant to N. Ghazzali. sented and discussed in Section 7.
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least part of a given character, and using the conten{f

it then determines what should be the best transformation
to apply tow(t) in order to produce aw(t + 1) that better
segments this character instance. This transformation may
consist of both pan and zoom operations. If the window of
attention indeed encompasses part of a character, then we
expect at the next iteration to increase the degree of detec-
tion of its character class. On the contrary, for the other
character classes, we expect to decrease the degrees of de-

X Window content

Fuzzy Extractor

Module tection.
Fuzzy representation Fuzzy representation At the end of an iteration, theindow steering module
E /\ (c.f. section 6) considers the output of both preceding net-
’ Locator Networksw ’Detector Network works to decide if the locating process should be carried
Pan & 200m \/Degresof detection on with additional iterations. This iterative process is in-
Directions _ - terrupted either if an instance of the searched character class
Window Steering is considered as being correctly segmented, or if nothing is
Module found after a sufficient number of iterations. In both cases,
Updated window | the segmentation process is started again with a new initial
window of attention. However, if the steering module con-
Figure 1:Character segmentation process. siders that the process should continue, the parameters of the

window of attention are updated using the outputs of both
the locator and detector networks.

2 Segmentation process overview
3 Fuzzy extractor module

The objective of our segmentation process is to find all in-
stances of character classes in a cursive word. This searghfuzzy geometric representation is used to map the hand-
conducted on a class by class basis, is mainly based onwriting content of windoww (¢) into a fixed dimension fuzzy
iterative positioning process that controls the panning angector space. This fuzzy representation is obtained by first
zooming of a window of attention. As illustrated in Figuresegmenting the original handwritten script into a sequence
1, four distinct components form this character segmentaf elementary “strokesS = sy, s», . .., s,, Where a stroke
tion process. An overview of each component is presented, ; = 1,2, ..., ¢, is modeled as a circular arc [11]. There-
in this section, and a more detailed description can be fourter, windoww(t) is positioned over the segmented script
in the following sections. and decomposed into3ax 2 grid of rectangular regiodsas

The first component of this segmentation process is trehown in Figure 2. Each stroke (or sub-stroke)Safound
fuzzy extractor modulge.f. section 3) that computes a rep-in each region is then fuzzified according to its orientation
resentation that maps the handwriting content of the wirand curvature using some predefined fuzzy sets. Fuzzified
dow of attention into a fixed dimension fuzzy vector spacestrokes are combined using fuzzy operators to form regional
The window of attention is characterized by a quadrupl&izzy vectors, and these vectors are simply concatenated to
w(t) = [ca(t), cy(t),ds(t),dy(t)], where at iteration > 0,  produce the final representation denaféd(z)).

c:(t) ande,(t) represent respectively th€ andY” center For more details about the fuzzy sets and operators, the
coordinates ofo(t), and wherel, (t) andd, (t) are its hori- reader is referred to ébert et al. [12], where this fuzzy
zontal and vertical sizes. representation was used to recognize isolated digits.

Once extracted, the fuzzy vector which describes the
handwriting content ofu(t) is passed on to both detec-
tor network(c.f. section 4) and a set ddcator networks 4 Detector network

(c.f. section 5). Each locator network is assigned to a spe- B )
cific character class, whereas only one detector network Ay classifier that can be trained can be used as the detec-

used for all character classes. tor network for the character segmentation process. Indeed,

The detector and the locator networks perform very dig'"ce the task of the det'ector network IS to determlne |f.the
tinct tasks. The goal of the detector network is to asseSyrrent content of the window of attention looks I|_ke anin-
whether or not the current window of attentiof) encom- stance of any character class, the only constraint is to be
passes an instance of any character class. The locator Net:oher configurations are obviously possible, but this one has already
work assumes that the window of attention encompassessabtwn good results [12].
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Figure 2:Original (up) and segmented word (down) “axe”. ¢) “papa” d) “axe”
The window of attention(¢) is shown on the segmented
word with its3 x 2 grid of regions Figure 4: Detection measures for character class ‘a’ using
windows of increasing sizes.
Outputs
Output acter classes, wher€;, i = 1,2,...,p, designates the

set of character samples for class During training, the
fuzzy extractor module is applied on the content of a win-
Hidden dow of attention placed over the bounding box of each sam-
ple character. After training, given a certain window con-
tent S(w(t)), the output of the detector network is a set
Input A(S(w(t))) = {61, 02, . .. ,0, } of detection degrees associ-
ated to each character class, withe [0,1],7 =1,2,...,p.

Layer

Layer

Layer
& In order to illustrate the ability of an already trained KP
| Inputs [ Inputs | network to detect instances of a character class, Figure 4
Kohonen SOM  Multilayer Perceptron shows some detection results for letter ‘a’ in several French

words. In each example, the initial window of attention was
manually positioned and then enlarged rightward and up-
Figure 3:KP network architecture. ward (keeping the lower left corner of the window fixed)
along the diagonal dotted lines in the figures. Above each
word, the graph of the detection degree associated with let-
able to train the classifier on a data set of isolated charagr ‘a’ is shown according to the position of the upper right
ters. For the experiment described in this paper (see Sefrner of the window.
tion 7), we have used the KP neural network [13] that com- |n Figures 4a, 4b, and 4c, the peaks in the detection sig-
bines (see Figure 3) a Kohonen self-organizing feature mayal correctly identify the character instances when the win-
(the K-net) with a multilayer feedforward Perceptron (thejow of attention effectively surrounds them. One should ob-
P-net). The idea behind this hybrid configuration is to bengerved that in all these examples, the KP network succeeded
fit from the well-known modeling capacities of the K-net toin detecting the ‘a’ instances even though ligatures link let-
help determine which cluster of the P-net should contributers together. But of course, the detector network might also
more than others when producing the network outputs. Affind false instances of a character class if the content of the
other interesting feature of the KP network is its ability toyindow of attention looks like the searched character class.
learn incrementally [13]. Moreover, high recognition rateshat case occurs in Figure 4d where an ‘a’ letter is detected
(96.3%) were reported on isolated digits recognition [12¢ven though the word does not include such a letter at that
using the international UNIPEN database of on-line scriptsosition. However, this should not be considered an error
[14]. More results for the case of isolated lowercase lettegince the corresponding window content can indeed be in-
are also given in Section 7. terpreted as an instance of letter ‘a’ if one does not consider
Let C = {C1,Cs,...,C,} denote the set op char- any other contextual or lexical informations.
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O The second subset 6f stems from the first but is de-
—0 O O—= Pe signed to also include some blank areas around the charac-

o

o

o

—0 O—= Pn | Pan ters. These additional windowsq(t),w1o(t), - - ., was(t))
(O—= DPw | directions areillustrated in Figure 7.
Fuzzy ° —= Ds
Rep- I o) —= Zoh

— Z;, | directions

% ° = 2, | Zoom 6 Window steering module
o

— o) —— Zi Once the detector and the locator networks are trained over
O their respective training sets, the segmentation process may

Input HiddenOutput startto search. for instances of characters. The steering mod-
layer layer layer ule is responsible for updating the parameters of the current

window of attention using the outputs of both the locator
and detector networks. The output of the locator network
Figure 5:Structure of the locator network. specifies the type of transformation that should be applied to
the window of attention. However, it only indicates a pan-
ning and zooming direction. It is the steering module that
modulates this information using the output of the detector
5 Locator networks network.
For each character clagsthe updating equations for the
In our current implementation, the locator networks conparameters of window(t) = [c, (t), ¢, (t), d. (1), d, (t)] are
sist of simple multilayer perceptrons [15], as illustrated injefined as follows :

Figure 5. The number of neurons on the hidden layer may —da(t)

vary, but the output layer is always formed of eight neurons. ex(t) + (Pepu)[1=0k (w(B)] exp(=35 =) de (1),
Among the output neurons, the first four are related to de- ) ey (t) + (pn—ps)[1-05 (w(t))] exp( ‘iyk(t))dy(t), "
sired pan directiong(, = eastp,, = north,p,, = west antp, v : J R —do(t)\y

= south), while the last four correspond to zoom directions o)+ (zon—zn {1 (w(£))] expl - ),

(zon = Out-horizontalg,, = out-vertical z;;, = in-horizontal, dy () + (zov—2i0) [1-8% (0(1))] exp(“2 D), (1)

Ziv = |n-ve.rt|.cal). , _ wherep., p., p, andp, are the panning outputs of the loca-
For training a locator network, different windows of at-;,, NEtWOrK,zop, Zin, Zow ANdz;, are its Zooming oUtpUts;

tention are positioned over distinct parts of isolated chara%— the output of the detector network for classand where
ters. The objective for thg locator network is to learn hovylk andw; are the expected height and width of characters
to pan and zoom each window of attention in such a way, cjassy. The value of these last two parameters can be es-
that it can tend to encompass the full character. The fuzgy, e from the cursive word using a standard baseline ex-
representatio(w()) forms an input datum for which the 4 ion method [16]. Their exact value is not critical. In the
desired outputs of pan and zoom are restricted to take only,e equations, three multiplicative factors determine the
binary values (the magnitude of the pan and zoom opergiagnitude of the window transformation: the first is the di-
tions will be determined by theindow steering module  ection of change indicated by the locator network, the sec-
A standard set ofn training attention windows ond takes into account the output of the detector network,
Q = {wi(t),w2(t),...,wa(t)} is defined for all loca- and the third weights the current window size relative to its
tor networks. In a given segmented characterbe- expected size.
longing to character clasg, the set of fuzzy vectors The search process stops either wWhgfw (t)) > Gmin
{Swi (1), S(wa(t)),- .., S(wn(t))} constitutesn training  gndy, (W(t)) = 0k (w(t—1) < 0, Or Whent > #,,q5. Thresh-
data for the locator network assigned to classThus, a ¢|ds,,,;,, is the minimum degree of detection for considering
training database composed |df;,| character samples for thatw(t) as converge, whereas, ., is the maximum num-

each clas# will lead ton x |C} | training data for the corre- per of iterations allowed before considering that no charac-
sponding locator network. ters can be found.

Our choice of? is based on the work of Suen &
al. [9] who defined the concept of “crucial parts”. The
first subset off2 is thus based directly on the three par-7 EXperiments and results
titions that were found to contain the most crucial parts
of alphanumeric characters. These windows, denotdthe experiments presented in this section are divided in two
wi(t),wa(t),...,ws(t), areillustrated in Figure 6: 2ax 2 sets. In the first set, recognition experiments are conducted
partition (6a), al x 2 partition (6b) and & x 1 partition (6¢c). on isolated lower case characters in order to evaluate the
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Figure 6:Subsefw (t), w2 (t),...,ws(t)} of Q.

Wg W11 Wy W18
W
Wyo W5 f) Wie Wio [ 3
aw 1
W12 W13 W7 W21
a) b) c) d)

Figure 7:Subsefwy(t),wio(t), - . .,was(t)} of Q2.

nominal performance of the detector network. Indeed, th]e ble 1-R " for the isolated | har-
segmentation process directly depends on the ability of th&o'e L ecognition rates for t €1s0 ated lower case char
detector network, in our case a KP network, to recogni cters of DevTest-R02/V02 (Section 1c). Rates are given for
character instances. In the second set of experiments, t %D'l to Top-5 hypotheses.

performances of the segmentation process itself are mea- [ Top-1| Top-2 | Top-3 | Top-4 | Top-5 |

sured in regards to its ability to efficiently segment charac- | 81-2%| 89-6%| 92-4%| 94-0%| 94-9%|

ters in cursive words under different initial conditions.

7.1 Isolated character recognition Overall the results given in Table 1 are good, especially

hen one considers that 19% of all the confusions that arise

The detector network was trained using the internation%ff h h hesi f | irs of |
UNIPEN database for on-line handwritten scripts [14].Ort e Top-1 hypothesis come rom.onylo pairs of letter
lasses among the 650 possible pairs. For example, letter

More precisely, Section 1c of data set Train-R01/V07 wa§2

used. This section contaird 539 lowercase characters. P3!S " and T, ‘m’ and ‘.n’: t gnd ', and ‘y’ and ‘g'_ .
Then. the detector network was tested on 370 low-  &r€ often very hard to distinguish because of very similar

ercase characters of data set DevTest-R02/V02. The rea%gf"pes' They produce the highest number of cpnqumns for
should note that, except for some empty segments, none'BE network. Some confused letters are shown in Figure 8.
the characters found in these data sets were removed, even

though many of them are either mislabeled, missegmentedo>  character segmentation

or very badly written. Table 1 gives the recognition rates ob-

tained by the KP network according to the first five hypothen order to quantify the performance of our segmentation
ses. For these experiments, each character was decompgs@tess, data sets of words with known character positions
into a3 x 2 grid of rectangular regions in order to compute and size are needed. Unfortunately, these informations are
49-dimension fuzzy vector using the fuzzy sets already d@ general not available in existing word test sets such as the
fined in Hebert et al. [12]. A19x (20x20) x 26 KP neural UNIPEN databases. Therefore, synthetic words have been
network was trained usirgj000 000 iterations for the K-net constructed by concatenating randomly selected characters
and 200 epochs for the P-net. from the UNIPEN DevTest-R02/V02 (section 1c). A cur-
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di<lalele
Label: a Label: ¢ Label: d Label: e Label: e it \’
Top-1: q Top-1: e Top-1: a Top-1: a Top-1: c
Top-2: a Top-2: ¢ Top-2: 0 Top-2: 0 Top-2: e
'w)(QAI\ ws(0) wg(0 \/
/ at / M ﬂ D 00 |wg0)  |ws(0)
_Il__abell: |I _Il__abell: I I_l__abell: m I_l__abell: n I_l__abell: 0
op-1: op-1: n op-1: n op-1: 1 op-1: a i "
TOB-ZZ i TOB-ZZ m Tog-Z: m Tog-Z: n Tog-Z: o] wav
% % \j w % Figure 10:Initial windows of attention for the reference let-
Label: t Label: t Label: v Labell w Labell'y ter of synthetlc word “wav”.
Top-1: z Top-1: z Top-1: u Top-1: u Top-1: g
Top-2: k Top-2: t Top-2: v Top-2: w Top-2: y
cess to converge towards the reference letter of a syn-

_ thetic word for various situations, nine non-overlapping ini-
Label: T Label g Label h Label: Label: s tial windowsw; (0),w2(0),...,we(0) are positioned in the
Top-1:t Top-1:s Top-1:i Top-1: f Top-1: p . . . .
Top-2: k Top-2: g Top-2: h Top-2: t Top-2: a neighborhood of the reference letter as illustrated in Figure

10. The dimensions of each initial window are the same

Figure 8:Examples of confused letters with their label ancfmd carrespand to half of the dimensions of the reference

etter along both the X and Y axes. Thus, these initial win-
- Top-2 h h h . . ' .
the Top-1 and Top-2 hypotheses produced by the deteCtordows of attention cover all together a total area which is 2.25

times greater than the area covered by the reference letter.
Moreover, only one initial windowy; (0)) is completely in-
D cluded inside the reference letter, the other ones being in-
/ - cluded only for either 50%uf> (0), w4(0), we(0),ws(0)) or
25% ((w1(0),w3(0),w7(0),we(0))) of their respective area.
For word v,; € TI'x, nine segmentation processes

_ Arerp b) *fos are thus started sequentially for each initial window
w1(0),w2(0),...,we(0). The same parameters are used for
each processt,,,,, = 12 andd,,;, = 0.8. As for parame-

N /\/ /z% tersh, andwy, the expected height and width of characters
in classk, the height of the main body of the word is first es-
c) “bmb” d) “zxv”

timated using standard histogram analysis. Then the values
of the two parameters are computed from the height of the
Figure 9:Examples of synthetic words with a), b) no overlagnain body using constant factors.
and c), d) a 5% overlapping. In Figure 11, intermediate results for synthetic
word “wav” are illustrated for the nine windows
w1(0),w2(0),...,we(0). Among these, eight have
sive effect is also simulated by overlapping the characterapidly converged toward the reference letter with a very
slightly. Figure 9 gives some examples with and withouhigh degree of detection at the end of the process. This
overlapping. result is very good considering that among the nine initial
For each clasg, a test sel';, = {vk1, Ve2,---> V100  windows, five (2(0),ws(0),w7(0),ws(0),wy(0)) contain
of 100 synthetic words is constructed according to the fosome parts of the surrounding ‘w’ or ‘v’ letters. Even so,
lowing pattern. Fory,; € T', the middle letter is always the segmentation processes succeeded in correctly locating
a randomly selected instance @f,, whereas the first and the reference letter for four of these more ambiguous cases.
third characters are randomly selected instances of any othoreover, the only initial window for which the process
classes. We call the middle lettergf; the reference letter. did not convergeuy (0)) could hardly be expected to do so
To introduce a cursive effect withify,;, a 5% overlapping since it contains none of the “crucial” information of the
factor is forced between each pair of adjacent charactergference letter.
The segmentation experiments which are then conducted on Table 2 presents the results of more exhaustive tests con-
each wordy,; € I';, concern the segmentation of the referducted over our complete synthetic word data sets. The first
ence letter, that is, the only instance(@f in ;. and second rows of this table give the average degrees of
In order to measure the ability of the segmentation pradetection achieved when the window of attention matches
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Table 2: Average degree of detection per character class (in %) ; the first two rows are reference performances while the
next four describe the performance of the segmentation process.

| [ a [ b ] c ] d ] e f[ g [ h [ i [ [ k] T [m]
isolated 97.0 99.2 97.2 98.6 97.1 85.6 97.2 95.8 98.9 98.7 96.9 90.6 95.4
word 81.0 | 838 | 500 | 954 | 533 | 788 | 899 | 66.6 | 547 | 808 | 814 | 89.3 | 64.7
1st max 96.5 97.1 84.2 99.9 94.8 96.8 99.1 96.6 99.9 98.6 98.1 90.8 98.9
2nd max 936 | 929 | 73.3 | 99.7 | 858 | 936 | 970 | 939 | 958 | 96.2 | 958 | 815 | 97.7
3th max 888 | 872 | 651 | 992 | 781 | 86.7 | 942 | 89.3 | 86.3 | 931 | 943 | 715 | 95.6
4th max 81.0 81.2 56.2 97.6 65.4 78.1 87.6 83.3 66.3 83.2 88.8 56.5 92.9
| [0 [ o P [ a st ul v w][x]y][z]
isolated 95.7 97.6 98.7 96.4 | 97.3 97.7 95.4 94.8 91.9 94.7 98.5 934 | 96.9
word 64.7 70.9 90.0 90.9 65.7 68.1 72.8 67.8 55.8 82.8 86.6 71.9 53.8
1st max 93.5 88.1 99.0 98.6 99.6 95.9 98.0 91.6 87.6 96.7 99.5 97.9 88.9
2nd max 88.0 80.8 97.1 95.6 98.1 91.2 95.9 85.0 | 794 91.5 98.7 96.0 | 79.1
3th max 795 | 695 | 954 | 90.7 | 96.7 | 853 | 91.8 | 77.3 | 70.1 | 84.8 | 96.6 | 93.8 | 694
4th max 68.7 56.7 93.3 82.3 92.0 78.7 85.6 65.5 | 58.1 4.7 95.0 89.2 52.8
Lol wel/ Wkl Wal) o wdly) serve as reference performances. Indeed they can be inter-
w1 (0) wi (1) wi1(2)  wi(3)... saeren—oss preted respectively as the maximum and minimum expected
WO/ Lol WO WO O performances of the segmentation process.
ws(0) ws(1) 0(2) wr(3) .. suentonoon The next four rows of the table show the resglts of the
— proposed segmentation process when considering respec-
(VY SAVARN V5 IVARRVEO VARV EXVARRN VY 6 1v4 tively the averages of the first, the second, the third and the
w3(0)  w3(l)  w3(2) w3(3)... sawsen=oes  forth maximum detection degréesbtained from the nine
LWEY WE WOy W W) initial windows. If these results are compared with those of
w4(0) wa(1) wi(2)  wi(3)... sutescan—ooo rlow tévtl),tf[)ne car:hobserve t'hat, e>(<jcept for tr;edc?set'of letter
— ‘" and letter '0’, these maximum degrees of detection are
WelZ WA WD WL A all higher than those obtained with the real bounding boxes
ws(0)  ws(1)  ws(2)  ws(3)... swwsaz=oos  ofthe reference letters in a word context. Thus the segmen-
WEV W/ WO/ WO WO tation process was able to strongly segment the reference
wg(0) wg (1) we(2)  we(3)... satwsa2)=0.96 letters even though their representations were significantly
WOT L/ WO WIS LU glegraded by the overlap between'characters. Furthermore,
w01(0) wr(1) wr(2)  wr(3) - if the best results of the segmentation process are now com-
7 7 7 T falen®)=090 hared to those of the first row, it can be seen that in many
Wwod LAl W W W cases, they come very close to the degree of detection of
wg(0)  ws(l)  ws(2) ws(3)... sawsp=oss  the isolated reference letter, and sometimes they can even
No%ZWe iR ve i eVal \b\@@ surpass them slightly. This phenomenon can be explained
wo(0) wo(1) Wo(2)  wo(3)... sulwotizn=ooo by the fact that the segmentation process is sometimes able

to zoom into a character and reject some of its more bulky
ligatures that can be found in the isolated characters of the

Figure 11:lllustration of the segmentation process for nineUNIPEN database.
distinct initial windows over synthetic word “wav”.

Overall, the averages of the rows of Table 2 are respec-
tively 96.0, 73.5, 95.6, 91.0, 85.8 and77.3, which demon-
strates that on average, at least 4 times out of 9, our segmen-

exactly the known bounding box of the reference letter. Thigtion process can converge on the reference letter and pro-
first row is when the reference letter is taken completely owtuce a better detection degree than the one that stems from
of context (i.e. is isolated), while the second row is when thi#gs own bounding box. Thus, we conclude to the feasibility
reference letter is in a word context. These results clearly iof our proposed segmentation strategy.

dicate that th&% of character overlapping in the synthetic

words induces a S|gn|f|cant drop in the average deg ree of ue-ZA window that has converged with a high degree of detection but with

tection, especially for simple CharaCterS like letter ‘c’. Thqlts center point outside of the real bounding box of the reference letter is
content of these two rows are important because they wilitomatically rejected.
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