
Learning to Segment Cursive Words using Isolated Characters�

Jean-Franc¸ois Hébert, Marc Parizeau
Laboratoire de vision et syst`emes num´eriques

Université Laval
Ste-Foy (Qc), Canada, G1K 7P4
fjfhebert,parizeaug@gel.ulaval.ca

Nadia Ghazzali
Dept. de math´ematiques et de statistique

Université Laval
Ste-Foy (Qc), Canada, G1K 7P4

ghazzali@mat.ulaval.ca

Abstract

This paper presents a new strategy for isolating handwrit-
ten characters in cursive words without making an explicit a
priori segmentation of the script, and without imposing any
lexical or other linguistic constraints. Furthermore, this ap-
proach can be completely trained using data sets of isolated
characters only.

The main idea behind this strategy is to have a window
of attention moving around in the cursive word, searching
for instances of known characters. If one assumes that the
current window contains some significant part of a charac-
ter, then the problem is to translate and scale the window
of attention in such a way that it converges to the bound-
ing box of that character. This process is implemented us-
ing both adetectornetwork and a set oflocatornetworks.
The detector network is responsible for recognizing whole
characters of any class and thus for stopping the iterative
process, whereas a locator network is assigned the task of
recognizing the crucial parts of a given character class and
producing the corresponding transformation parameters for
the window. The feasibility of this process is shown through
experiments using the UNIPEN database of on-line scripts.

1 Introduction

The automatic recognition of on-line cursive script is a diffi-
cult pattern recognition problem[1, 2], mainly because of the
great variations encountered in different handwriting styles,
but also because of the so-called segmentation/recognition
dilemma where characters need both to be segmented before
they can be recognized, and recognized before they can be
segmented. Many recognition systems have been designed
to tackle these difficulties using various methods and tech-
niques. Some of the more recent works include the use of
neural networks [3, 4, 5], hidden markov models [6, 7] and
formal grammars [8].

�This work was supported in part by NSERC and FCAR grants to M.
Parizeau and in part by an NSERC grant to N. Ghazzali.

However, most of these systems deal with the seg-
mentation/recognition dilemma by, on the one hand, over-
segmentation of the scripts in smaller unit than characters
(usually graphemes) and analysis of all possible segmenta-
tion paths, and, on the second hand, by imposing lexical con-
straints in order to limit combinatorial explosion. The ob-
ject of this paper is to present a somewhat different strategy
where no explicit a priori segmentation is made and where
no lexical constraints are a priori imposed.

The main idea behind this strategy, is to be able to ini-
tialize a window of attention somewhere near a character in
a cursive word, and have a segmentation process fine tune
the position and size of this window in such a way that it
searches for the bounding box of this character. By repeat-
ing this process on a sufficiently large set of initial points,
one could then build a segmentation graph for the cursive
word which could be interpreted using adjacency constraints
[10], lexical knowledge, or both. It is hoped that using such
a strategy, a complete and flexible cursive script recognition
system can be built, although no claims to such a system is
made in this paper (work on this is still under way). What is
claimed in this paper, however, is the feasibility of this new
segmentation strategy and that the underlying process can
be trained automatically using only isolated characters.

In previous work, Suen et al. [9] have already demon-
strated that handwritten alphanumeric characters are made
up of crucial parts that tend to preserve the invariant char-
acteristics and exhibit the distinctive features of characters.
It is our objective to exploit these crucial parts in order to
create a more flexible character segmentation/recognitional-
gorithm.

The rest of this paper is organized as follows. First, Sec-
tion 2 presents a global overview of our segmentation pro-
cess. Then, Section 3 to Section 6 describe in details each of
its four components. Finally, experimental results are pre-
sented and discussed in Section 7.

Window Steering
Module

Fuzzy representation

Pan & zoom

Detector Network

Degrees of detection

Fuzzy representation

Updated window

Locator Networks

Module
Fuzzy Extractor

Window content

Directions

yd

dx

,()cx cy

(t)

ω(t+1)

ω

Figure 1:Character segmentation process.

2 Segmentation process overview

The objective of our segmentation process is to find all in-
stances of character classes in a cursive word. This search,
conducted on a class by class basis, is mainly based on an
iterative positioning process that controls the panning and
zooming of a window of attention. As illustrated in Figure
1, four distinct components form this character segmenta-
tion process. An overview of each component is presented
in this section, and a more detailed description can be found
in the following sections.

The first component of this segmentation process is the
fuzzy extractor module(c.f. section 3) that computes a rep-
resentation that maps the handwriting content of the win-
dow of attention into a fixed dimension fuzzy vector space.
The window of attention is characterized by a quadruple
!(t) = [cx(t); cy(t); dx(t); dy(t)], where at iterationt � 0,
cx(t) andcy(t) represent respectively theX andY center
coordinates of!(t), and wheredx(t) anddy(t) are its hori-
zontal and vertical sizes.

Once extracted, the fuzzy vector which describes the
handwriting content of!(t) is passed on to both adetec-
tor network(c.f. section 4) and a set oflocator networks
(c.f. section 5). Each locator network is assigned to a spe-
cific character class, whereas only one detector network is
used for all character classes.

The detector and the locator networks perform very dis-
tinct tasks. The goal of the detector network is to assess
whether or not the current window of attention!(t) encom-
passes an instance of any character class. The locator net-
work assumes that the window of attention encompasses at

least part of a given character, and using the content of!(t),
it then determines what should be the best transformation
to apply to!(t) in order to produce an!(t + 1) that better
segments this character instance. This transformation may
consist of both pan and zoom operations. If the window of
attention indeed encompasses part of a character, then we
expect at the next iteration to increase the degree of detec-
tion of its character class. On the contrary, for the other
character classes, we expect to decrease the degrees of de-
tection.

At the end of an iteration, thewindow steering module
(c.f. section 6) considers the output of both preceding net-
works to decide if the locating process should be carried
on with additional iterations. This iterative process is in-
terrupted either if an instance of the searched character class
is considered as being correctly segmented, or if nothing is
found after a sufficient number of iterations. In both cases,
the segmentation process is started again with a new initial
window of attention. However, if the steering module con-
siders that the process should continue, the parameters of the
window of attention are updated using the outputs of both
the locator and detector networks.

3 Fuzzy extractor module

A fuzzy geometric representation is used to map the hand-
writing content of window!(t) into a fixed dimension fuzzy
vector space. This fuzzy representation is obtained by first
segmenting the original handwritten script into a sequence
of elementary “strokes”S = s1; s2; : : : ; sq, where a stroke
si, i = 1; 2; : : : ; q, is modeled as a circular arc [11]. There-
after, window!(t) is positioned over the segmented script
and decomposed into a3�2 grid of rectangular regions1, as
shown in Figure 2. Each stroke (or sub-stroke) ofS found
in each region is then fuzzified according to its orientation
and curvature using some predefined fuzzy sets. Fuzzified
strokes are combined using fuzzy operators to form regional
fuzzy vectors, and these vectors are simply concatenated to
produce the final representation denotedeS(!(t)).

For more details about the fuzzy sets and operators, the
reader is referred to H´ebert et al. [12], where this fuzzy
representation was used to recognize isolated digits.

4 Detector network

Any classifier that can be trained can be used as the detec-
tor network for the character segmentation process. Indeed,
since the task of the detector network is to determine if the
current content of the window of attention looks like an in-
stance of any character class, the only constraint is to be

1Other configurations are obviously possible, but this one has already
shown good results [12].

(t)ω

ω(t)

Figure 2:Original (up) and segmented word (down) “axe”.
The window of attention!(t) is shown on the segmented
word with its3� 2 grid of regions

....

....
....

.... Output
Layer

Hidden
Layer

Input
Layer

ωij

θ j
jp

....

Outputs

Inputs Inputs

1
i

j

Multilayer PerceptronKohonen SOM

Figure 3:KP network architecture.

able to train the classifier on a data set of isolated charac-
ters. For the experiment described in this paper (see Sec-
tion 7), we have used the KP neural network [13] that com-
bines (see Figure 3) a Kohonen self-organizing feature map
(the K-net) with a multilayer feedforward Perceptron (the
P-net). The idea behind this hybrid configuration is to bene-
fit from the well-known modeling capacities of the K-net to
help determine which cluster of the P-net should contribute
more than others when producing the network outputs. An-
other interesting feature of the KP network is its ability to
learn incrementally [13]. Moreover, high recognition rates
(96.3%) were reported on isolated digits recognition [12]
using the international UNIPEN database of on-line scripts
[14]. More results for the case of isolated lowercase letters
are also given in Section 7.

Let C = fC1; C2; : : : ; Cpg denote the set ofp char-

0

0.5

1

0

0.5

1

a) “maman” b) “cerveau”

0

0.5

1

0

0.5

1

c) “papa” d) “axe”

Figure 4:Detection measures for character class ‘a’ using
windows of increasing sizes.

acter classes, whereCi, i = 1; 2; : : : ; p, designates the
set of character samples for classi. During training, the
fuzzy extractor module is applied on the content of a win-
dow of attention placed over the bounding box of each sam-
ple character. After training, given a certain window con-
tent eS(!(t)), the output of the detector network is a set
�(eS(!(t))) = f�1; �2; : : : ; �pg of detection degrees associ-
ated to each character class, with�i 2 [0; 1], i = 1; 2; : : : ; p.

In order to illustrate the ability of an already trained KP
network to detect instances of a character class, Figure 4
shows some detection results for letter ‘a’ in several French
words. In each example, the initial window of attention was
manually positioned and then enlarged rightward and up-
ward (keeping the lower left corner of the window fixed)
along the diagonal dotted lines in the figures. Above each
word, the graph of the detection degree associated with let-
ter ‘a’ is shown according to the position of the upper right
corner of the window.

In Figures 4a, 4b, and 4c, the peaks in the detection sig-
nal correctly identify the character instances when the win-
dow of attention effectively surrounds them. One should ob-
served that in all these examples, the KP network succeeded
in detecting the ‘a’ instances even though ligatures link let-
ters together. But of course, the detector network might also
find false instances of a character class if the content of the
window of attention looks like the searched character class.
That case occurs in Figure 4d where an ‘a’ letter is detected
even though the word does not include such a letter at that
position. However, this should not be considered an error
since the corresponding window content can indeed be in-
terpreted as an instance of letter ‘a’ if one does not consider
any other contextual or lexical informations.

Input
layer

Hidden
layer

Output
layer

Fuzzy

pn

pe

zoh

zov

ziv

zih

ps

pw

Pan

directions

Zoom

directions

Rep.

Figure 5:Structure of the locator network.

5 Locator networks

In our current implementation, the locator networks con-
sist of simple multilayer perceptrons [15], as illustrated in
Figure 5. The number of neurons on the hidden layer may
vary, but the output layer is always formed of eight neurons.
Among the output neurons, the first four are related to de-
sired pan directions (pe = east,pn = north,pw = west andps
= south), while the last four correspond to zoom directions
(zoh = out-horizontal,zov = out-vertical,zih = in-horizontal,
ziv = in-vertical).

For training a locator network, different windows of at-
tention are positioned over distinct parts of isolated charac-
ters. The objective for the locator network is to learn how
to pan and zoom each window of attention in such a way
that it can tend to encompass the full character. The fuzzy
representationeS(!(t)) forms an input datum for which the
desired outputs of pan and zoom are restricted to take only
binary values (the magnitude of the pan and zoom opera-
tions will be determined by thewindow steering module).

A standard set ofn training attention windows

 = f!1(t); !2(t); : : : ; !n(t)g is defined for all loca-
tor networks. In a given segmented characterS be-
longing to character classk, the set of fuzzy vectors
f eS(!1(t)); eS(!2(t)); : : : ; eS(!n(t))g constitutesn training
data for the locator network assigned to classk. Thus, a
training database composed ofjCkj character samples for
each classk will lead ton�jCkj training data for the corre-
sponding locator network.

Our choice of
 is based on the work of Suen &
al. [9] who defined the concept of “crucial parts”. The
first subset of
 is thus based directly on the three par-
titions that were found to contain the most crucial parts
of alphanumeric characters. These windows, denoted
!1(t); !2(t); : : : ; !8(t), are illustrated in Figure 6 : a2 � 2
partition (6a), a1�2 partition (6b) and a2�1 partition (6c).

The second subset of
 stems from the first but is de-
signed to also include some blank areas around the charac-
ters. These additional windows (!9(t); !10(t); : : : ; !23(t))
are illustrated in Figure 7.

6 Window steering module

Once the detector and the locator networks are trained over
their respective training sets, the segmentation process may
start to search for instances of characters. The steering mod-
ule is responsible for updating the parameters of the current
window of attention using the outputs of both the locator
and detector networks. The output of the locator network
specifies the type of transformation that should be applied to
the window of attention. However, it only indicates a pan-
ning and zooming direction. It is the steering module that
modulates this information using the output of the detector
network.

For each character classk, the updating equations for the
parameters of window!(t) = [cx(t); cy(t); dx(t); dy(t)] are
defined as follows :

!(t+1):

2
666664

cx(t) + (pe�pw)[1��k(!(t))] exp(
�dx(t)
wk

)dx(t);

cy(t) + (pn�ps)[1��k(!(t))] exp(
�dy(t)

hk
)dy(t);

dx(t) + (zoh�zih)[1��k(!(t))] exp(
�dx(t)
wk

)dx(t);

dy(t) + (zov�ziv)[1��k(!(t))] exp(
�dy(t)

hk
)dy(t)

3
777775

(1)

wherepe, pw, pn andps are the panning outputs of the loca-
tor network,zoh, zih, zov andziv are its zooming outputs,�k
is the output of the detector network for classk, and where
hk andwk are the expected height and width of characters
in classk. The value of these last two parameters can be es-
timated from the cursive word using a standard baseline ex-
traction method [16]. Their exact value is not critical. In the
above equations, three multiplicative factors determine the
magnitude of the window transformation: the first is the di-
rection of change indicated by the locator network, the sec-
ond takes into account the output of the detector network,
and the third weights the current window size relative to its
expected size.

The search process stops either when�k(!(t)) � �min

and�k(!(t))��k(!(t�1) < 0, or whent > tmax. Thresh-
old �min is the minimum degree of detection for considering
that!(t) as converge, whereastmax is the maximum num-
ber of iterations allowed before considering that no charac-
ters can be found.

7 Experiments and results

The experiments presented in this section are divided in two
sets. In the first set, recognition experiments are conducted
on isolated lower case characters in order to evaluate the

1
ω2

ω3
ω4

ω 6ωω5 7ω

ω8

a) b) c)

Figure 6:Subsetf!1(t); !2(t); : : : ; !8(t)g of
.

9ω

10ω

ω

ω12

11

13ω

14ω

ω15 16ω

17ω

18ω

ω19 20ω

21ω

ω23

22ω

a) b) c) d)

Figure 7:Subsetf!9(t); !10(t); : : : ; !23(t)g of
.

nominal performance of the detector network. Indeed, the
segmentation process directly depends on the ability of the
detector network, in our case a KP network, to recognize
character instances. In the second set of experiments, the
performances of the segmentation process itself are mea-
sured in regards to its ability to efficiently segment charac-
ters in cursive words under different initial conditions.

7.1 Isolated character recognition

The detector network was trained using the international
UNIPEN database for on-line handwritten scripts [14].
More precisely, Section 1c of data set Train-R01/V07 was
used. This section contains61 539 lowercase characters.
Then, the detector network was tested on the37 470 low-
ercase characters of data set DevTest-R02/V02. The reader
should note that, except for some empty segments, none of
the characters found in these data sets were removed, even
though many of them are either mislabeled, missegmented
or very badly written. Table 1 gives the recognition rates ob-
tained by the KP network according to the first five hypothe-
ses. For these experiments, each character was decomposed
into a3�2 grid of rectangular regions in order to compute a
49-dimension fuzzy vector using the fuzzy sets already de-
fined in Hébert et al. [12]. A49�(20�20)�26 KP neural
network was trained using3 000 000 iterations for the K-net
and 200 epochs for the P-net.

Table 1:Recognition rates for the isolated lower case char-
acters of DevTest-R02/V02 (Section 1c). Rates are given for
Top-1 to Top-5 hypotheses.

Top-1 Top-2 Top-3 Top-4 Top-5

81.2% 89.6% 92.4% 94.0% 94.9%

Overall the results given in Table 1 are good, especially
when one considers that 19% of all the confusions that arise
for the Top-1 hypothesis come from only 10 pairs of letter
classes among the 650 possible pairs. For example, letter
pairs ‘i’ and ‘l’, ‘m’ and ‘n’, ‘t’ and ‘f’, and ‘y’ and ‘g’
are often very hard to distinguish because of very similar
shapes. They produce the highest number of confusions for
the network. Some confused letters are shown in Figure 8.

7.2 Character segmentation

In order to quantify the performance of our segmentation
process, data sets of words with known character positions
and size are needed. Unfortunately, these informations are
in general not available in existing word test sets such as the
UNIPEN databases. Therefore, synthetic words have been
constructed by concatenating randomly selected characters
from the UNIPEN DevTest-R02/V02 (section 1c). A cur-

Label: a
Top-1: q
Top-2: a

Label: c
Top-1: e
Top-2: c

Label: d
Top-1: a
Top-2: o

Label: e
Top-1: a
Top-2: o

Label: e
Top-1: c
Top-2: e

Label: i
Top-1: l
Top-2: i

Label: l
Top-1: n
Top-2: m

Label: m
Top-1: n
Top-2: m

Label: n
Top-1: r
Top-2: n

Label: o
Top-1: a
Top-2: o

Label: t
Top-1: z
Top-2: k

Label: t
Top-1: z
Top-2: t

Label: v
Top-1: u
Top-2: v

Label: w
Top-1: u
Top-2: w

Label: y
Top-1: g
Top-2: y

Label: f
Top-1: t
Top-2: k

Label: g
Top-1: s
Top-2: g

Label: h
Top-1: i
Top-2: h

Label: r
Top-1: f
Top-2: t

Label: s
Top-1: p
Top-2: a

Figure 8:Examples of confused letters with their label and
the Top-1 and Top-2 hypotheses produced by the detector.

a) “erp” b) “fos”

c) “bmb” d) “zxv”

Figure 9:Examples of synthetic words with a), b) no overlap
and c), d) a 5% overlapping.

sive effect is also simulated by overlapping the characters
slightly. Figure 9 gives some examples with and without
overlapping.

For each classk, a test set�k = f
k1;
k2; : : : ;
k100g
of 100 synthetic words is constructed according to the fol-
lowing pattern. For
kj 2 �k, the middle letter is always
a randomly selected instance ofCk, whereas the first and
third characters are randomly selected instances of any other
classes. We call the middle letter of
kj the reference letter.
To introduce a cursive effect within
kj , a 5% overlapping
factor is forced between each pair of adjacent characters.
The segmentation experiments which are then conducted on
each word
kj 2 �k concern the segmentation of the refer-
ence letter, that is, the only instance ofCk in
kj .

In order to measure the ability of the segmentation pro-

1

2

3

5

4

8

7

6 9

ω (0)

ω (0)

ω (0) ω (0)

ω (0)

ω (0) ω (0)

ω (0)

ω (0)

“wav”

Figure 10:Initial windows of attention for the reference let-
ter of synthetic word “wav”.

cess to converge towards the reference letter of a syn-
thetic word for various situations, nine non-overlapping ini-
tial windows!1(0); !2(0); : : : ; !9(0) are positioned in the
neighborhood of the reference letter as illustrated in Figure
10. The dimensions of each initial window are the same
and correspond to half of the dimensions of the reference
letter along both the X and Y axes. Thus, these initial win-
dows of attention cover all together a total area which is 2.25
times greater than the area covered by the reference letter.
Moreover, only one initial window (!5(0)) is completely in-
cluded inside the reference letter, the other ones being in-
cluded only for either 50% (!2(0); !4(0); !6(0); !8(0)) or
25% ((!1(0); !3(0); !7(0); !9(0))) of their respective area.

For word
kj 2 �k, nine segmentation processes
are thus started sequentially for each initial window
!1(0); !2(0); : : : ; !9(0). The same parameters are used for
each process :tmax = 12 and�min = 0:8. As for parame-
tershk andwk, the expected height and width of characters
in classk, the height of the main body of the word is first es-
timated using standard histogram analysis. Then the values
of the two parameters are computed from the height of the
main body using constant factors.

In Figure 11, intermediate results for synthetic
word “wav” are illustrated for the nine windows
!1(0); !2(0); : : : ; !9(0). Among these, eight have
rapidly converged toward the reference letter with a very
high degree of detection at the end of the process. This
result is very good considering that among the nine initial
windows, five (!2(0); !3(0); !7(0); !8(0); !9(0)) contain
some parts of the surrounding ‘w’ or ‘v’ letters. Even so,
the segmentation processes succeeded in correctly locating
the reference letter for four of these more ambiguous cases.
Moreover, the only initial window for which the process
did not converge (!9(0)) could hardly be expected to do so
since it contains none of the “crucial” information of the
reference letter.

Table 2 presents the results of more exhaustive tests con-
ducted over our complete synthetic word data sets. The first
and second rows of this table give the average degrees of
detection achieved when the window of attention matches

Table 2:Average degree of detection per character class (in %) ; the first two rows are reference performances while the
next four describe the performance of the segmentation process.

a b c d e f g h i j k l m

isolated 97.0 99.2 97.2 98.6 97.1 85.6 97.2 95.8 98.9 98.7 96.9 90.6 95.4
word 81.0 83.8 50.0 95.4 53.3 78.8 89.9 66.6 54.7 80.8 81.4 89.3 64.7

1st max 96.5 97.1 84.2 99.9 94.8 96.8 99.1 96.6 99.9 98.6 98.1 90.8 98.9
2nd max 93.6 92.9 73.3 99.7 85.8 93.6 97.0 93.9 95.8 96.2 95.8 81.5 97.7
3th max 88.8 87.2 65.1 99.2 78.1 86.7 94.2 89.3 86.3 93.1 94.3 71.5 95.6
4th max 81.0 81.2 56.2 97.6 65.4 78.1 87.6 83.3 66.3 83.2 88.8 56.5 92.9

n o p q r s t u v w x y z

isolated 95.7 97.6 98.7 96.4 97.3 97.7 95.4 94.8 91.9 94.7 98.5 93.4 96.9
word 64.7 70.9 90.0 90.9 65.7 68.1 72.8 67.8 55.8 82.8 86.6 71.9 53.8

1st max 93.5 88.1 99.0 98.6 99.6 95.9 98.0 91.6 87.6 96.7 99.5 97.9 88.9
2nd max 88.0 80.8 97.1 95.6 98.1 91.2 95.9 85.0 79.4 91.5 98.7 96.0 79.1
3th max 79.5 69.5 95.4 90.7 96.7 85.3 91.8 77.3 70.1 84.8 96.6 93.8 69.4
4th max 68.7 56.7 93.3 82.3 92.0 78.7 85.6 65.5 58.1 74.7 95.0 89.2 52.8

!1(0) !1(1) !1(2) !1(3) : : : �a(!1(8))=0:96

!2(0) !2(1) !2(2) !2(3) : : : �a(!2(5))=0:99

!3(0) !3(1) !3(2) !3(3) : : : �a(!3(5))=0:98

!4(0) !4(1) !4(2) !4(3) : : : �a(!4(4))=0:99

!5(0) !5(1) !5(2) !5(3) : : : �a(!5(12))=0:98

!6(0) !6(1) !6(2) !6(3) : : : �a(!6(12))=0:96

!7(0) !7(1) !7(2) !7(3) : : : �a(!7(6))=0:99

!8(0) !8(1) !8(2) !8(3) : : : �a(!8(4))=0:99

!9(0) !9(1) !9(2) !9(3) : : : �a(!9(12))=0:00

Figure 11:Illustration of the segmentation process for nine
distinct initial windows over synthetic word “wav”.

exactly the known bounding box of the reference letter. The
first row is when the reference letter is taken completely out
of context (i.e. is isolated), while the second row is when the
reference letter is in a word context. These results clearly in-
dicate that the5% of character overlapping in the synthetic
words induces a significant drop in the average degree of de-
tection, especially for simple characters like letter ‘c’. The
content of these two rows are important because they will

serve as reference performances. Indeed they can be inter-
preted respectively as the maximum and minimum expected
performances of the segmentation process.

The next four rows of the table show the results of the
proposed segmentation process when considering respec-
tively the averages of the first, the second, the third and the
forth maximum detection degrees2 obtained from the nine
initial windows. If these results are compared with those of
row two, one can observe that, except for the case of letter
‘l’ and letter ’o’, these maximum degrees of detection are
all higher than those obtained with the real bounding boxes
of the reference letters in a word context. Thus the segmen-
tation process was able to strongly segment the reference
letters even though their representations were significantly
degraded by the overlap between characters. Furthermore,
if the best results of the segmentation process are now com-
pared to those of the first row, it can be seen that in many
cases, they come very close to the degree of detection of
the isolated reference letter, and sometimes they can even
surpass them slightly. This phenomenon can be explained
by the fact that the segmentation process is sometimes able
to zoom into a character and reject some of its more bulky
ligatures that can be found in the isolated characters of the
UNIPEN database.

Overall, the averages of the rows of Table 2 are respec-
tively 96:0, 73:5, 95:6, 91:0, 85:8 and77:3, which demon-
strates that on average, at least 4 times out of 9, our segmen-
tation process can converge on the reference letter and pro-
duce a better detection degree than the one that stems from
its own bounding box. Thus, we conclude to the feasibility
of our proposed segmentation strategy.

2A window that has converged with a high degree of detection but with
its center point outside of the real bounding box of the reference letter is
automatically rejected.

8 Conclusion

This paper has presented a new strategy for tackling the seg-
mentation/recognitiondilemma in cursive handwriting. This
strategy is based on a moving window of attention, initially
positioned somewhere within the cursive word, that searches
for surrounding character hypotheses using the learned cru-
cial parts of each character class. The main advantage of the
proposed approach is that it does not rely on, nor require,
any of the usual ill-defined preprocessing steps like dehook-
ing, slant removal, precise baseline extraction, etc, nor does
it assume sequential processing of strokes, thus eliminating
the problems caused by delayed strokes. Another of its in-
teresting characteristics is that it can be completely trained
using data sets of isolated characters only.

Although it has yet to be applied to the recognition of
real cursive script, its feasibility was however shown by con-
structing synthetic three letter words using overlapping iso-
lated characters, and by showing that when the window of
attention is positioned near the middle letter of these syn-
thetic words, the proposed segmentation process is capable
of converging rapidly to the bounding box of the middle let-
ter with a high degree of detection at least 4 times out of
9 (on average). Thus by defining a simple scanning policy
of the whole word, and by using adjacency constraints [10],
one could create a segmentation graph of all found character
hypotheses, and then search this graph for coherent charac-
ter strings.

References
[1] C.C. Tappert, C.Y. Suen, T. Wakahara, “The State of the Art in

On-Line Handwriting Recognition”,IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 12, no. 8, pp. 787-
808, 1990.

[2] T. Wakahara, H. Murase, K. Odaka, “On-Line Handwriting
Recognition”, Proc. of the IEEE, vol. 80, no. 7, pp. 1181-
1194, 1992.

[3] L. Schomaker, “Using Stroke- or Character-based Self-
Organizing Maps in the Recognition of On-Line, Connected
Cursive Script”,Pattern Recognition, vol. 26, no. 3, pp. 443-
450, 1993.

[4] P. Morasso, L. Barberis, S. Pagliano, D. Vergano, “Recogni-
tion Experiments of Cursive Dynamic Handwriting with Self-
Organizing Networks”,Pattern Recognition, vol. 26, no. 3,
pp. 451-460, 1993.

[5] G. Seni, R. K. Srihari, N. Nasrabadi, “Large Vocabulary
Recognition of On-Line Handwritten Cursive Words”,IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 18,
no. 7, pp. 757-762, 1996.

[6] Y. Bengio, Y. LeCun, C. Nohl, C. Burges, “LeRec: A
NN/HMM Hybrid for On-Line Handwriting Recognition”,
Neural Computation, vol. 7, no. 5, 1995.

[7] M. Mohamed, P. Gader, “Handwritten Word Recognition
Using Segmentation-Free Hidden Markov Modeling and

Segmentation-Based Dynamic Programming Techniques”,
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 18, no. 5, pp. 548-554, 1996.

[8] M. Parizeau, R. Plamondon, “A Fuzzy-Syntactic Approach to
Allograph Modeling for Cursive Script Recognition”,IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 17,
No. 7, pp. 702-712, July 1995.

[9] C. Y. Suen, J. Guo, Z. C. Li, “Analysis and Recognition of
Alphanumeric Handprints by Parts”,IEEE Trans. on Systems,
Man, and Cybernetics, vol. 24, no. 4, pp. 614-631, 1994.

[10] Parizeau M., Plamondon R., ”Allograph Adjacency Con-
straints for Cursive Script Recognition”,Proc. of the Third
International Workshop on Frontier in Handwriting Recogni-
tion, Buffalo, May 25-27, pp. 252-261, 1993.

[11] X. Li, M. Parizeau, R. Plamondon, “Segmentation and Re-
construction of On-Line Handwritten Scripts”,Pattern Recog-
nition, vol. 31, no. 6, pp. 675-684, 1998.

[12] J.-F. Hébert, M. Parizeau, N. Ghazzali, “A New Fuzzy Geo-
metric Representation for On-Line Isolated Character Recog-
nition”, Proc. of the 14th International Conference on Pattern
Recognition, pp. 1121-1123, 1998.

[13] M. Guillot, R. Azouzi, “Improving On-Line Adaptation in
Neurocontrol using a Combination of Self-organizing Map
and Multilayer Feedforward Network”, appears inIntelligent
Engineering Systems Through Artificial Neural Networks, vol.
4, ASME Press, pp. 915–922, 1995.

[14] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, S.
Janet, “UNIPEN Project of On-Line Data Exchange and Rec-
ognizer Benchmarks”,Proc. of the 12th International Confer-
ence on Pattern Recognition, vol. 2, pp. 29-33, 1994.

[15] S. Haykin, Neural Networks — A Comprehensive Founda-
tion, chap. 6, IEEE Press, 1995.

[16] M. Côté, E. Lecolinet, M. Cheriet, C. Y. Suen, “Automatic
Reading of Cursive Script Using a Reading Model and Per-
ceptual Concepts: the PERCEPTO System”, to appear in the
first issue ofInternational Journal on Document Analysis and
Rec., 1998.

	en-tete: Vision Interface '99, Trois-Rivières, Canada, 19-21 May
	page1: 33
	page2: 34
	page3: 35
	page4: 36
	page5: 37
	page6: 38
	page7: 39
	page8: 40

