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Abstract

This paper adopts a sampling perspective to surface light

field modeling. This perspective eliminates the need of us-

ing the actual object surface in the surface light field defini-

tion. Instead, the surface ought to provide only a parame-

terization of the surface light field function that specifically

reduces aliasing artifacts visible at rendering. To find that

surface, we propose a new criterion that aims at optimiz-

ing the smoothness of the angular distribution of the light

rays emanating from each point on the surface. The main

advantage of this approach is to be independent of any spe-

cific reflectance model. The proposed criterion is compared

to widely used criteria found in multi-view stereo and its ef-

fectiveness is validated for modeling the appearance of ob-

jects having various unknown reflectance properties using

calibrated images alone.

1. Introduction

Modeling the appearance of objects is a major problem

in computer vision. Here, the objective of modeling is to

allow free viewpoint, photorealistic visualization of a pho-

tographed object.

To reach this objective, geometry-based approaches rely

on physical principles governing the interactions between

reflectance properties, light sources and geometric surfaces.

By making enough assumptions concerning the reflectance

properties of the object, it is possible to solve an inverse

problem to obtain the shape and appearance of the object

from just a few images.

The alternative image-based approaches, developed in

the last decade, sample and reconstruct a light field from a

dense set of viewpoints. Their major strength is the mild

hypothesis under which they operate. By not assuming

any specific reflectance model and being independent of

the scene geometry, these approaches are well suited for

visualizing objects with complex geometry and various re-

flectance properties. However, reconstructing a sparsely

sampled light field without aliasing artifacts is still a chal-

lenge. Progress in this direction is desirable since sparse

Figure 1. From a sampling perspective, modifying

the parameterization surface has geometric con-

sequence: two rays that are indexed closely on

a specific parameterization surface may not con-

tinue to be on another one, e.g. neighbouring rays

1 and 3 on the teapot surface are indexed on dis-

tant locations on the surrounding surface.

datasets reduce the complexity of both the acquisition and

computation of the model.

Not surprisingly, researchers have addressed this prob-

lem by combining shape measurements with light fields

[2, 3]. To benefit from the knowledge of the object shape

(geometric proxy), Miller et al. [1] used a parameterization

of the light field function which differs from that of the orig-

inal, well-known two-plane parameterization [4, 5]. In this

new parameterization, every ray of light is indexed by two

indices (r, s) defining a point on the surface of the object

along with two others (θ, ϕ) that define a direction leaving

that point. Doing this leads to a so-called surface light field.

Surface light fields were reported to produce sharper images

than using the two-plane parameterization for comparable

dataset and model sizes [2]. However, surface light field

approaches forego the important advantage of light fields

by relying on geometry measurements.

This paper leaves the geometric setting in favor of a sam-

pling approach to surface light field modeling. Concretely,

this implies that the (r, s) surface is no longer used to define

the object surface but serves only to index the light rays, as

depicted in Figure 1. The main contribution of this paper is

to show how this perspective leads to a new criterion that the



surface must optimize in order to produce un-aliased render-

ing. Contrarily to the geometric setting, the proposed cri-

terion is independent of any specific reflectance model yet

produces models of comparable quality from images alone.

First, section 2 formalizes the problem. Then, section 3

provides an overview of the research that is related to the

present work. Section 4 defines what should be the appro-

priate criterion to assess the optimality of a specific param-

eterization surface. Section 5 defines the set of potential

parameterization surfaces. This requires revisiting the fa-

miliar concept of the visual hull. Section 6 finally presents

an implementation and results obtained from the proposed

approach.

2. Problem Statement

A surface light field provides the radiance of every ray

originating from a surface. Formally, a surface light field is

a 4D function:

IK : K × S2 → R
3; (r, s, θ, ϕ) 7→ IK(r, s, θ, ϕ), (1)

where K is a mesh of the parameterization surface, S2 is

the sphere of unit vectors in R
3 and the radiance, IK , is

given by points in R
3 corresponding to RGB triples [2]. To

emphasize the implicit dependency between them, a sub-

script, K, of the surface light field IK always indicates its

corresponding parameterization surface.

Observe that any surface enclosing the object is a po-

tential parameterization surface, as illustrated in Figure 1.

Hence, no special importance should be given to the actual

object surface; raising the following central question of this

paper: Which surface is better adapted to parameterize the

surface light field and why? An intuitive guess is that the

optimal parameterization surface must be the actual surface

of the object. However, justifying this not necessarily true

answer is not trivial.

This problem may be formalized as a regularized opti-

mization with constraint. The constraint arises because not

every surface is an acceptable parameterization surface, e.g.

a surface that encloses only a part of the object. In fact, the

set κ of meshes that are potential parameterization surfaces

will be given in Section 5. The optimization to perform is

thus: given an initial parameterization surface K0 ∈ κ and

a finite set of calibrated images of an object, here consid-

ered as a set of samples of the surface light field function,

{IK(ri, si, θi, ϕi)} , solve:

Kopt = arg min
K∈κ

(εext(IK(r, s, θ, ϕ)) + λεint(K)). (2)

Kopt is called the optimal parameterization surface. The ex-

ternal energy εext is based on a sampling criterion applied

on IK that quantifies the optimality (to be defined later) of

the considered parameterization surface K. Finally, the in-

ternal energy εint is a function that regularizes the param-

eterization surface and λ is a regularization constant fixed

empirically. This formalization is indeed closely related to

the search for the object surface found in the multi-view

setting. The purpose of this paper is however only to show

that a sampling perspective imposes reviewing both the ex-

ternal energy εext and the set of potential parameterization

surfaces κ.

3. Related Work

When sampling a surface light field, the objective is to

reconstruct the sampled function without aliasing artifacts.

Aperture filtering (synthetic or not) [4] can ensure this by

smoothing input images until disparity is nowhere supe-

rior to one pixel [6]. However, using this technique with

a sparsely sampled light field produces excessively blurred

images or may remove desirable view-dependent variations

in reflectance.

The dynamic reparameterization of the light field pro-

posed by Isaksen et al. [7] helps solve this problem. This

reparameterization relies on the two-plane parameterization

used in [4] and [5]. A point on an entrance plane ((s, t)
coordinates) and a point on an exit plane ((u, v) coordi-

nates) provide the four parameters required to index every

ray crossing the planes. By interactively moving the exit

plane through space, it is possible to control which samples

in each input view will contribute to the reconstructed ray.

This way, any depth may exhibit zero disparity, allowing

any chosen scene element to be reconstructed without alias-

ing artifacts. However, artifacts will be apparent for other

scene elements whose disparity exceeds one pixel. In [8]

this idea was extended by allowing a user to reparameter-

ize the light field on a series of layers. This paper gener-

alizes these ideas by automatically computing an optimal

reparameterization of the light field on a curved surface.

Our approach nonetheless requires searching for a sur-

face, and is therefore related to the recovery of the shape

found in various multi-view stereo algorithms [9]. How-

ever, the objects that are modeled here are not necessar-

ily Lambertian and may exhibit significant view-dependent

variations in reflectance. Moreover, no specific reflectance

model is assumed, which makes it impossible to rely on

matching across images or on a criterion based on a spe-

cific reflectance model, like that of [10, 11]. This paper is

however further related to that of [10] since it also searches

to optimize a surface to improve light field efficiency.

We advocate that leaving aside the necessity of using

the actual object surface eases the modeling process. In

this way, we are akin to the space carving approaches [12].

However, searching for the optimal parameterization sur-

face does not assume any specific reflectance model and is



Figure 2. From 3 viewpoints, radiance along at

most 3 directions is sampled at any point on the

parameterization surface. On the other hand, each

pixel of every image samples a point along the

spatial dimensions. Typically, from every view-

point, a camera captures millions of pixels.

therefore not directly related to the photohull.

The visual hull [13] is also a complex shape that can be

obtained given a set of images alone and without assum-

ing any reflectance model. As will be seen, this shape is

however not sufficient to enable un-aliased rendering with a

sparsely sampled light field. As in [14, 15], it is used as a

starting point for the optimization, but it will also play a role

in defining the set of all potential parameterization surfaces.

4. The Optimal Parameterization Surface

Each pixel of every image samples the radiance of a ray

of the surface light field function. To reconstruct the contin-

uous value of this function given these samples a minimum

amount of smoothness between the radiance of nearby sam-

pled rays is required. Otherwise, the interpolation of rays

becomes aliased or requires a tremendous sampling rate.

An optimal parameterization surface should thus increase

the smoothness along the less densely sampled dimensions.

The following sections explain how to achieve this goal.

4.1. The Less Densely Sampled Dimensions

In Figure 2, one can observe that the (θ, ϕ) dimensions

of a surface light field are typically the least densely sam-

pled. Actually, on a given parameterization surface, each

pixel of each image samples a (r, s) point on this surface.

Given n images each made of p pixels, at most np points

are sampled along the surface (r, s) dimensions. We refer

to this as the spatial sampling of the light field function.

On the other hand, one viewpoint adds only one new sam-

pled (θ, ϕ) direction at each point. Therefore, if one gathers

n viewpoints, there is a maximum of n sampled directions

per point to cover the whole hemisphere of directions leav-

ing this point. This is called the angular sampling of the

surface light field function. Comparing the number of view-

points, n, with np in typical acquisitions, it is clear that the

angular sampling rate is many orders lower than the spatial

sampling rate. This simple observation reveals how angular

sampling is much more critical than spatial sampling.

4.2. Smoothing the Angular Dimensions

As seen in Figure 1, varying the parameterization surface

definitely affects the surface light field function. To see how

this has an impact on the reconstruction of the surface light

field, we follow and extend the analysis of Vaish et al. [16].

This analysis is performed in flatland for simplicity. The

scene is a line, located at depth d0, with a Lambertian sur-

face exhibiting a black and white checkered pattern. In Fig-

ure 3(a), the hemispheres beneath the s axis at each depth

d0, d1 and d2 display the continuous value of the light field

function for this scene, at those depths, when varying direc-

tion. In going from d0 to d2, one observes that the function

has less angular smoothness.

Now consider the sampling and reconstruction of the

light field function at the depths d0, d1 and d2. By sampling

rays from only three directions, the three cameras in Figure

3(a) would not be sufficient to correctly reconstruct the light

field if the parameterization surface was either placed at d1

or d2. Their continuous function is not smooth enough for

only three samples to interpolate it without aliasing. On the

other hand, the situation is different at d0 since the func-

tion at this point is very smooth. Indeed, the three samples

would be black and interpolation would lead to the true con-

tinuous function.

Note that if the angular sampling rate was high enough, it

would be possible to reconstruct all three functions located

at d0, d1 and d2. A high sampling rate would thus only

ease the reconstruction process in that obtaining the optimal

depth would be less critical. This corroborates the tradeoff

between obtaining the exact optimal depth and increasing

the sampling density [6].

Therefore, among all possible parameterizations, using

one for which the angular smoothness is high should be

preferred. This will allow the low angular sampling rate

to nonetheless correctly reconstruct the surface light field

function along these dimensions thus producing less aliased

interpolated views. This suggests that a criterion be devised

which specifically searches for smoothness along the angu-

lar dimension. Since the global regularity of a function de-

pends on the decay of the amplitude of its spectrum as the

frequency increases [17], we propose using, as a measure of

angular smoothness, the first zero-centered moment of the

amplitude spectrum along the θ dimension:

cd(s) =

∫

|w|
∣

∣

∣
F̂d(s, w)

∣

∣

∣
dw, (3)

where F̂d(s, w) = Fθ [Id(s, θ)] is the Fourier transform



(a)

−d2 −d1 d0 d1 d2
0

0.2

0.4

0.6

0.8

1

Distance from the plane

N
o

rm
a

liz
e

d
 c

ri
te

ri
o

n
 v

a
lu

e

Variance

Entropy

Gradient

Frequency

(b)

(c)

−d2 −d1 d0 d1 d2
0

0.2

0.4

0.6

0.8

1

Distance from the plane

N
o

rm
a

liz
e

d
 c

ri
te

ri
o

n
 v

a
lu

e

Variance

Entropy

Gradient

Frequency

(d)

Figure 3. The consequences of changing the

depth of the parameterization surface is illustrated

for lines exhibiting a Lambertian checkered pat-

tern in (a) and a constant intensity gradient in (c).

The corresponding responses of various criteria

are shown in (b) and (d). Note that in (b), variance,

entropy and gradient criteria all have the same be-

haviour and are superimposed.

along the θ dimension of the surface light field function

Id(s, θ) parameterized at depth d and evaluated at point s.

The equation (3) is called the frequency criterion. The gen-

eralization to the θ, ϕ domain is straightforward. Then, the

external energy term εext of equation (2) is obtained by

summing the frequency criterion (in the θ, ϕ dimensions)

at each of the parameterization surface point.

4.3. Comparison with previous criteria

Now let us present what makes the criterion (3) prefer-

able over those widely used in multi-view stereo or depth

from focus. Recall that the expressions of the variance vd

and gradient fd criteria respectively used in these two fields

are:

vd(s) =
1

π

∫

(Id(s, θ)− Īd(s))
2dθ, (4)

fd(s) = −

(

∂Id(s)

∂s

)2

, (5)

where Īd(s) = 1
π

∫

Id(s, θ)dθ. We prefer the continuous

version of these expressions to better compare them to the

new proposed criterion. To further relate the frequency cri-

terion to the others presented, the integrand of equation (3)

may be replaced by its squared value to obtain an equivalent

expression in the spatial domain as follows:

ĉd(s) =
1

2π

∫
∣

∣

∣

∣

∂Id(s, θ)

∂θ

∣

∣

∣

∣

2

dθ, (6)

using Parseval’s identity and iwF̂d(s, w) = Fθ

[

∂Id(s,θ)
∂θ

]

.

The evaluations of these criteria along with the entropy-

based criterion of [16] are presented for the checkered pat-

tern in Figure 3(b). When increasing depth d, we would

expect the criteria to increase accordingly. However, as de-

picted in Figure 3(b), these criteria do not. In fact, they

correctly lead to a minimum at depth d0, but remain con-

stant above a certain height. In the case of the variance vd

and entropy, the explanation is that the hemispheres always

display half white and half black, irrespective of their depth

above d0. Consequently, the two criteria remain constant.

The reason that the gradient criterion fd also misbehaves is

similar. The mean of every point seen from different di-

rections soon becomes gray as the depth increases. The

gradient thus also remains constant. Considering that any

texture can be decomposed into a linear sum of digital si-

nusoid patterns of variable frequencies, each exhibiting the

problem revealed, this situation may occur for a wide vari-

ety of texture patterns.

Criteria that give the same cost at d1 and d2 clearly miss

that the function at d1 is more accurately represented by a

fixed number of angular samples than one at d2. This ob-

servation was the first one that led us to question the jus-

tification of variance, gradient or entropy-based criteria in



the context of surface light field rendering. These crite-

ria are adapted to a presupposed reflectance model, when

searching for the actual object surface, but they fail to put a

meaningful cost to the various possible parameterizations,

even for Lambertian textured objects. Stated simply, what

makes the new criterion different is that it captures the an-

gular variations of the function.

The second observation that leads us to favor this new

criterion is that it applies to arbitrary reflectance models

since it is based on sampling considerations instead of ge-

ometry. Contrarily to SAD, SSD or normalized cross-

correlation which assume that each point has the same ap-

pearance when viewed from different directions, the crite-

rion (3) is still suitable if significant view-dependent varia-

tions in reflectance are present. All it achieves in this case

is finding a parameterization surface that displays the max-

imum angular smoothness. This maximum in smoothness

may still exhibit significant variation along the angular di-

mensions.

The frequency criterion was also validated for a constant

intensity gradient texture as in [16]. The results are shown

in Figure 3(c),(d). Moreover, the results shown demonstrate

that the frequency criterion does not have the problem of the

depth from focus criterion since it correctly has a minimum

at d0 for a diffuse surface whose 2nd and higher order spa-

tial derivatives of radiance vanish.

5. The set of potential parameterization sur-

faces

Clearly, many surfaces are candidates for parameterizing

the surface light field. Obtaining a surface that minimizes

equation (2) for a given object is a complex optimization

problem. It is possible to solve this problem by starting

from an arbitrary surface K0 and deforming it until the min-

imization is achieved, as in [18]. However, like most mini-

mizations, starting as close as possible to the solution eases

the convergence and can avoid erroneous local minima. The

starting point in our case is the visual hull [13]. This start-

ing point is coherent with our intention not to suppose any

reflectance model since the visual hull is a shape that can be

obtained without any such assumption [12]. Using the vi-

sual hull as a starting point is helpful but not new. Examples

are the work of Hernandez and Schmitt [15] that optimizes

a stereo reconstruction while enforcing a soft constraint us-

ing silhouette coherence or that of Furukawa and Ponce [14]

who propose instead to rely on a hard constraint using rims.

5.1. Visual Hull as a Constraint

The true novelty in using the visual hull for surface light

field modeling originates from Theorem 1 below. It pro-

vides a necessary and sufficient condition to ensure that all

of the rays originating from the object and only these rays

are parameterized. Otherwise, the parameterization surface

would either miss a part of the object or would incorporate

a part of the background, all of which are undesirable. This

condition is of great practical importance since it defines the

set of potential parameterization surfaces κ and thus con-

strains the optimization. From a theoretical standpoint, it is

interesting since it revisits the familiar concept of the visual

hull and provides a new justification for it.

Theorem 1. Visual hull constraint theorem: A closed

surface parameterizes all rays emerging from an object and

does not parameterize any ray emerging from the back-

ground iff it has the same visual hull as that of the object.

Proof: The visual hull is defined by Laurentini [13]. His

definition 2 may be restated as follows. Consider any view-

point V outside the convex hull of the object and any point

P . The external visual hull (or simply the visual hull) of an

object is the set of points P for which the half-lines origi-

nating from any V and passing through P always intersect

the object.A given visual hull can be identified to the set of

all half-lines that arises from its definition.

A surface that parameterizes all half-lines (rays) emerg-

ing from the object and none from the background shares

the same set of half-lines as that of the visual hull of the ob-

ject. Thus this parameterization surface has the same visual

hull as that of the object.

Let us prove the converse statement. If the visual hull

of the parameterization surface includes a point that does

not belong to the visual hull of the object, then it is pos-

sible to find a viewpoint for which this point projects to a

background pixel. Therefore, this surface parameterizes a

background ray. On the other hand, if the visual hull of the

parameterization surface does not include a point of the vi-

sual hull of the object, then a viewpoint exists for which the

projection of this point is an object pixel and is not included

in the parameterization surface. Therefore, this parameteri-

zation surface misses an object ray. The converse statement

is proved: a closed surface that has the same visual hull as

that of the object parameterizes all rays of it and none of the

background. �

Since the optimization starts from the visual hull of the

object itself, there is a simple way to enforce the visual hull

constraint. Consider a point of the visual hull having at

least one convex principal curvature [19] and the object ray

tangent at this point and parallel to its convex principal di-

rection. Deforming the visual hull surface by moving such

a point inward automatically leads to a shape that does not

have the same visual hull as that of the object since the con-

sidered ray would be missing. Therefore, the optimization

of the equation (2) under the visual hull constraint could

never move such a point. On the other hand, any other point

is free to move inward. Note that moving any point of the

visual hull outward never respects the visual hull constraint

and is thus never allowed. Following this guideline ensures



that only a set of parameterization surfaces κ that satisfies

the visual hull constraint is visited during the optimization

and thus the constraint is enforced.

6. Implementation and results

Many multi-view stereo algorithms could be used to per-

form the optimization of equation (2) [9]. Since the pur-

pose of this paper is not to delve into the intricacies of these

methods, we have implemented a greedy line-search op-

timization, see Algorithm 1, that is simple to implement

and sufficient to illustrate the validity of the proposed ap-

proach. As in the multi-view setting, the minimization to be

achieved is complicated by the visibility problem [20]. This

problem itself is very complex and will not be addressed

here. Visibility is taken into account simply by conceiving

the parameterization surface as opaque.

Algorithm 1 Greedy line-search optimization

αmax ← maximum displacement distance

k ← number of steps in line-search

Tcurvature ← maximal convex principal curvature

TGain ← minimum worth moving gain

K0 ← visual hull mesh

γ1, γ2 ← principal curvatures of K0

S ← vertices of K0 with min(γ1, γ2) ≥ Tcurvature

for every vertex ∈ S located at
→

q 0 with normal
→

N do

for j = 0 to k do

M [j]← ĉ(
→

q 0 + j · (αmax/k)·
→

N)
end for

jmin ← argmin(M);Gain←M [0]−M [jmin]
if Gain > TGain then

→

q←
→

q 0 + jmin · (αmax/k)·
→

N
end if

end for

Apply a smoothing operator

Note that the expression (6) is preferred for its computa-

tional efficiency and is evaluated using interpolation on the

acquired samples {IK(ri, si, θi, ϕi)}. Regarding this ex-

pression, only a limited cone around the normal direction

is used as the domain of integration since aliasing becomes

predominant at grazing angles. A cone of 60 degrees is typ-

ically used.

Both synthetic and real image sets were processed in

the experiments. The acquisition consisted in capturing or

simulating several calibrated images of an object against

a known and fixed colored background. In real image

sets, positioning was made possible by using targets laid

around the objects. The images were acquired using a

6.3 megapixel Canon EOS Rebel Digital and are roughly

uniformly distributed on a hemisphere around the object.

(a) (b)

(c) (d)

Figure 4. Results for the Buddha data set [3]. (a)

One of the input pictures. (b) High resolution close

up rendering of the model for visual comparison.

Light Field Maps [3] using (c) the explicit geometry

and (d) the optimal parameterization surface.

After positioning and extracting the silhouettes, the visual

hull was reconstructed using a volumetric grid of 1503 grid

points. The proposed optimization does not depend on a

particular surface light field representation. We chose the

Light Field Mapping algorithm [3] to represent our surface

light fields.

The first experiment was conducted on a synthetic object

exhibiting complex, non-Lambertian reflectance properties.

It illustrates a case for which matching across images would

not be legitimate. The Buddha model from [3] was used and

results obtained from its 281 pictures data set are presented

in Figure 4. Note that the high number of images is neces-

sary to capture the complex reflectance of the model. The

proposed optimization leads to a parameterization that pro-

duces results that are almost identical to those of [3], shown

in Figure 4(c), although the latter uses the explicit geomet-

ric model.

To further illustrate the difference between the frequency

and the variance criteria, Figures 5(a),(b) show a plot of the

value taken by these respective criteria as a point on the

chest of the Buddha model is moved inwardly. The Bud-

dha surface is known to lie close to the depth value 5 on

the plot (pointed by the arrow in Figure 5 (a)) and the scale

of the abscissa is such that its end value lies at the center

of the model. Contrarily to what would be expected, the

variance reaches its minimum value far from the actual ob-

ject surface. The same criteria are also evaluated for neigh-

bouring points and the result is shown in Figures 5(c)-(f),

which shows that the minima are close to those previously
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Figure 5. Frequency (a) and variance (b) criteria

evaluation for a point on the Buddha according

to its depth. The small images in the figures dis-

play a planar projection of surface light field val-

ues along the θ, ϕ dimensions at the depth cor-

responding to the minimum values of respective

criteria. (c),(e) Frequency criterion for two other

neighbouring points. (d),(f) Variance criterion for

the same two points.

found. This confirms that the chosen point is not an outlier

and smoothing the surface may not be appropriate to solve

this problem. The reason why the variance misbehaves is

the presence of a strong white specularity at this point of

the surface, visible in the small image of Figure 5(a), that

increases the variance of this point when compared to that

visible in the small image of Figure 5(b).

Figure 6 presents results obtained from a real data set

of 132 pictures. The object used is now a glossy plate laid

down in a cylinder box. Parameterizing the surface light

field on the visual hull (see Figures 6(a),(c)) and on the opti-

mal parameterization surface (see Figures 6(b),(d)) is com-

pared. Recall that comparing to the visual hull is important

in this context since it is another complex shape that can

be obtained without assuming any reflectance model. The

concavity makes the visual hull a poor sampling surface.

In spite of the glossy finish, the proposed algorithm found

a parameterization surface that exhibits much less aliasing

artifacts than the visual hull or any other arbitrarily chosen

surface. Note that aliasing artifacts are better visualized in

(a) (b)

(c) (d)

Figure 6. Light field map rendering of a real data

set using the visual hull (a),(c) and using the opti-

mal parameterization surface (b),(d).

the video located on the website of the authors1 because

they have a dynamic structure.

The last series of results presented in Figure 7 is meant to

display a case that still has specularities and a concavity but

that now also encompasses hard edges. The object is a plas-

tic LEGO box filled with blocks. Hard edges are a challenge

for most surface reconstruction algorithms that enforce a

smooth reconstruction. In spite of this, the optimal param-

eterization surface produces good rendering quality by ad-

equately leveraging on the geometry/images tradeoff. This

is why the model displays a realistic appearance although

the optimal parameterization surface found is not the actual

object surface, as seen in Figure 7(c).

7. Conclusion

Instead of relying on physical principles governing the

interactions between reflectance properties, light sources

and geometric surfaces, a new criterion that minimizes the

first zero-centered moment of the amplitude spectrum along

the angular dimensions was proposed for selecting a sur-

face light field parameterization surface. Results showed

the effectiveness of the criterion for objects with various

reflectance properties. It would be interesting to further in-

vestigate the relation between the optimal parameterization

surface and the actual object surface.
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(a) (b)

(c) (d)

Figure 7. Using the visual hull (a) as a parameter-

ization surface produces the model shown in (b).

The optimal parameterization surface (c) leads to

the model shown in (d).
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