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Abstract

Range image registration and surface reconstruction have been traditionally considered as

two independent processes where the latter relies on the results of the former. This paper pre-

sents a new approach to surface recovery from range images where the two processes are uni-

fied and performed in a common volumetric representation. While the reconstructed surface is

described in its implicit form as a signed distance field within a volume, registration informa-

tion for matching partial surfaces is encoded in the same volume as the gradient of the distance

field. This allows coupling of both reconstruction and registration and leads to an algorithm

whose complexity is linear with respect to the number of images and the number of measured

3D points. The close integration and performance gain improve interactivity in the process of

modeling from range image acquisition to surface reconstruction. The distances computed in

the direction of filtered normals improve robustness while preserving the sharp details of the

initial range images. It is shown that the integrated algorithm is tolerant to initial registration

errors as well as to measurement errors. The paper describes the representation and formalizes

the approach. Experimental results demonstrate performance advantages and tolerance to

aforementioned types of errors.
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1. Introduction

Registration and surface reconstruction (integration of multiple range images) are

two main steps in 3D modeling from multiple range images. Even though these two

problems have received considerable attention during the past decade, real-time in-
teractive modeling still remains out of reach. This partially results from the fact that

registration and integration are performed separately but, more importantly, it is

mainly a consequence of the complexity of existing algorithms, especially registration

algorithms. Avoiding these limitations would be beneficial to numerous applications:

• Interactive acquisition. Providing a partially reconstructed model to the user dur-

ing data acquisition greatly facilitates the selection of the next best view and as-

sures that the set of acquired images is sufficient for model building. This is

particularly important for real-time range sensors [10,24,25] where a large quantity
of range images have to be registered and integrated. Usually the registration and

integration are performed off-line which might take considerable time [10].

• Filtering. Real-time registration and integration of redundant range data can be

used to improve the quality of the reconstructed model by reducing the variance

of the noise while keeping the sharp details of the surface intact. Such filtering

can be accomplished by averaging multiple observations of the same surface, a

process equivalent to frame averaging in image processing. Nevertheless, this

requires very well aligned images.
• Self referencing. Assuming that the change of viewpoint is small between subse-

quent range images in a sequence, registration can be used to reference the sensor

with respect to its environment, thus providing a complementary or an alternative

approach for positioning using external referencing systems. This application is

also important in mobile robotics since the algorithm provides an up-to-date vol-

umetric model of the scene as well as the rigid transformation between views.

Registration, the process of aligning surfaces, can be considered as two different

problems: global registration where no a priori information on relative positions
and orientations of images is available, and pose refinement where it is assumed that

the images are initially close to their exact position. In this paper, registration is con-

cerned with the latter problem. The initial position of images is usually obtained by

using a sensor positioning device, but can also be obtained by manually aligning the

input surfaces.

This paper takes a step towards real-time interactive modeling systems by provid-

ing a method for registration as well as for integration of range images. The integra-

tion and registration steps are merged and both the reconstructed surface model and
its corresponding matching information can be built incrementally. This is made pos-

sible using a single volumetric structure which encodes the signed distance field for

integration and its gradient for matching. By computing the gradient field for match-

ing, the combinatorial complexity of pairwise matching is avoided. Actually, the al-

gorithm becomes of linear complexity with respect to both the number of images and

the measured points. Moreover, the volumetric structure is advantageously exploited

to make the algorithm scalable and thus a good candidate for highly parallel imple-

mentation. Besides incremental modeling, simultaneous registration of multiple
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range images can be processed within the same structure. In this case, the complete

set of images is used to compute the two fields during the process.

Computing the distance between a point and a surface as the distance in the di-

rection of filtered normals is another important aspect that is put forward in this pa-

per since this affects both registration and integration. Choosing the closest point
based on the Euclidean distance makes the result sensitive to range image noise;

although it is possible to smooth (filter) the range images, sharp details are lost. It

is instead proposed to only filter estimated normals while leaving the 3D points

intact. This preserves details of the surface while making the algorithm more robust

with respect to noise.

The paper is organized as follows: a short overview of registration strategies and

problems related to their complexity as well as an overview of volumetric methods

for integration are given in Section 2. While Section 3 introduces the notation, Sec-
tion 4 presents the proposed solution and describes the formalism of the new ap-

proach for registration and integration of range images. Experimental results

obtained with the proposed algorithm are presented in Section 5. Finally, directions

of further research and concluding remarks are given in Section 6.
2. Related work

There are three main strategies for the registration of multiple range images: (i) reg-

istration of two surfaces at a time [27], usually referred to as pairwise registration, (ii)

simultaneous registration of all images [13,19,21,29], and (iii) sequential registration

of images to previously registered and merged images [3]. For a more detailed review

of existing registration algorithms as well as a comparison of different algorithms, the

reader is referred to [6,7,23]. Pairwise registration generally causes an accumulation of

the registration error: when a pair of images are not perfectly registered, the registra-

tion error propagates to the next pair. On the other hand, simultaneous registration
does not suffer from accumulation of registration errors but registering a single image

requires matching to all other images. As a consequence, algorithm complexity grows

exponentially with the number of images. The third solution is a compromise between

the two others. In this case the propagation of the registration error is reduced and the

number of pairwise matchings is equal to the number of images.

Computational complexity, sensitivity to noise and initial registration errors are

key issues in registration. From the standpoint of computational complexity, the

main problem is the matching step. The simplest approach to achieve matching be-
tween two images is to select control points in one image and project them onto the

triangulated surface obtained from the second image along the direction of the sen-

sor [2,13]. Since it is only determined by the sensor direction, the selection of corre-

sponding points is fast and not sensitive to image noise. Nevertheless, it is sensitive to

initial registration error and sensor viewpoint. Another commonly used approach is

to choose the closest point as the corresponding point [1]. Although this approach

provides the direction of the matched point based on surface shape, the matching

is sensitive to image noise [6]. Actually matching errors occur whenever the distance
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between two surfaces is large because many points on one surface are attracted by

noisy points (see [23], Fig. 8 or Fig. 2 in this paper). As for the computational com-

plexity, a brute force matching algorithm requires OðN 2Þ operations, where N is the

number of points in each image. Using more sophisticated approaches and data

structures such as k–d trees, reduces complexity to OðN logNÞ [8,25].
Following registration, the images are integrated into a single surface. Recently, a

number of volumetric approaches for integration have been proposed

[5,11,17,20,22,28]. These algorithms use an implicit representation of the surface in

the form of a signed distance field calculated on a discrete lattice of points. The im-

ages are merged by averaging fields for individual images. The reconstructed surface

is recovered by extracting the zero-set of the resulting distance field, usually using the

Marching Cubes algorithm [15]. A strong point of the volumetric approach is its

ability to incrementally build a model by simply accumulating the distance fields
for individual images.

None of the volumetric algorithms, except [16–18], provide the registration of

range images. Masuda [16] initially proposed to merge both integration and registra-

tion in a common structure by matching and aligning signed distance fields. Never-

theless, registration does not fully exploit the potential of the volumetric structure to

reduce complexity of closest point search and the extensive use of k–d trees makes

this approach computationally expensive [17]. Moreover, the computation of the dis-

tance field is based on the distance to the closest point and is thus sensitive to noise.
To limit this behavior, Masuda restricts the search for the closest points to those

points within the distance equal to a voxel diagonal. However, this severely limits

the maximum acceptable initial registration errors. We solve this problem by com-

puting the distance in the direction of filtered normals and we reduce the computa-

tional complexity by matching and aligning surfaces with the implicit representation

of the reconstructed model.
3. Notation

Throughout the paper, vectors are denoted using boldface letters while scalars are

denoted in italic. A range image, I , is considered as a set of measured 3D points, pi,
I ¼ p1; . . . ; pNf g;

defined on a rectangular grid, where N is the number of points in the image. It is
assumed that the surface of an object is initially approximated by a triangulated

range image. This triangulation, S, is represented as a set of triangles Ti,
S ¼ T1; . . . ; TMf g;

where triangles Ti are defined using three vertices pi;1; pi;2; pi;3 2 I and M is the

number of triangles. The triangulation of a range image is easy to obtain since the

rectangular grid implicitly encodes the connectivity between points.
An iso-surface of some surface S, denoted as SðdÞ, is a surface such that for all

p 2 SðdÞ, gðp; SÞ ¼ d, where g is some distance function. Similarly an iso-triangle
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T ðdÞ for a triangle T is a triangle such that for all p 2 T ðdÞ; gðp; T Þ ¼ d holds for a

given distance function g. Triangle T ¼ T ð0Þ is referred to as a generator-triangle

while the surface S ¼ Sð0Þ is referred to as a generator-surface.
4. Incremental registration and integration

4.1. Specific objectives and requirements

As our primary goal we set a method for registration and integration of multiple

range images that can be used during acquisition, possibly in real-time, thus provid-

ing a partially reconstructed model after each image is acquired. Furthermore, the

method should allow simultaneous registration since this strategy avoids accumula-
tion of registration error. To achieve this goal, the method has to satisfy a number of

requirements:

• The method must be incremental in order to allow updating of the model without

further processing of previously acquired images. Moreover, computational com-

plexity of registration and integration of an image should not depend on the num-

ber of previously integrated images. Otherwise, the method will slow down as new

images are added to the model.

• The method has to be of linear complexity with respect to both the number of im-
ages and the number of triangles or points in acquired images. Linear complexity

offers a performance advantage but also allows parallelization of the algorithm.

This means that the computational tasks can be distributed over a large number

of processors, thus drastically reducing the execution time.

• The method should be robust with respect to noise. In particular this requirement

concerns registration: the noise should not affect significantly neither the quality of

registration nor the execution time (convergence).

• Since range images must overlap in order to allow registration, they contain re-
dundant data. The method should be able to exploit this redundancy to improve

the quality of the reconstructed model, i.e. to reduce the noise. Furthermore, this

filtering should not smooth sharp details of the surface.

4.2. An integrated volumetric approach

Volumetric integration algorithms [5,11,17] are incremental, thus satisfying the

first requirement: a signed distance field is built for each image on a discrete lattice
of points within some envelope (regular, rectangular volumetric grid). The recon-

structed model is represented as the average of individual fields. From such a repre-

sentation the surface model can be extracted using the Marching Cubes algorithm

[15].

A good compromise between computational complexity and quality of registra-

tion is to register an image to a model reconstructed from previously registered

and merged images. However, this does not solve the complexity problem itself:

whenever an image is merged to the model, the matching complexity grows with
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the number of points and triangles. Since the model is generally not a graph surface,

the points cannot be projected onto the surface of the model and one must search

for the corresponding point. This leads to a complexity of OðN 2Þ or OðN logNÞ using
k–d trees [9]. The proposed solution to this problem and the main idea of incremen-

tal registration is to build the matching information incrementally in the same way as
the distance field is built for integration. This consists in pre-computing closest

points in the neighborhood of the reconstructed surface such that the matching in-

formation can be obtained as the value from the closest lattice point (voxel centre).

To do so, one will note that the direction of the closest point on the surface is actu-

ally given as the direction of the gradient of the distance field d (where differentiable),

and that the following relation holds
r
X
i

di ¼
X
i

rdi: ð1Þ
The gradient of the integration (summed) field, and thus the direction towards the

closest point of the reconstructed model can be computed incrementally in the same

way as the distance field itself. This solves the performance problem related to the

number of images since each image is used only once for matching. It is possible to

compute the gradient directly from the distance field but the result is inaccurate since
the distance field is calculated only on a discrete lattice of points. Therefore, the

gradient is rather computed explicitly on the same lattice points for which the dis-

tance field is calculated.

Since the direction of matching corresponds to the gradient of the distance field,

the choice of distance plays a major role and not all distances are equally suited for

registration. Computing the distance in the direction of the sensor results in gradient

values, and therefore in matching directions, that are determined by the direction of

the sensor instead of depending on the shape of the surface. On the other hand, using
the distance relative to the closest points is sensitive to noise and might result in in-

valid matchings (see Fig. 2). Our solution to this problem is to compute the distance

field in the direction of filtered and interpolated normals rather than towards the

closest point on the surface. The rationale is that the normals can be filtered effi-

ciently without filtering range data and, by doing so, the influence of noise can be

reduced to a very small area which makes it practically insignificant. The distance

in the direction of interpolated normals has been introduced in [26].

To make the complexity of the field computation proportional to the number of
triangles we note that the distance to the surface is always calculated relative to a

single triangle on the surface, and that there is a connected region in 3D space where,

for each point, that triangle contains the closest point. In the case of the classical Eu-

clidean distance, this region corresponds to a Voronoi cell for the triangle. Partition-

ing a surface envelope in these regions allows independent computation of the field

for each triangle. An example of the envelope partition is shown in Fig. 3. This re-

duces the computational complexity to be proportional to the number of triangles.

Furthermore, the computation of the field using this strategy is highly parallelizable
and can be distributed among any number of processors (smaller or equal to the

number of triangles).
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4.3. Computing the distance field in the direction of filtered normals

The first step in computing the distance field is obtaining normals at all points of a

triangulated surface. The normal n for a triangle whose vertices are p1; p2, and p3 is

obtained as
Fig. 1

two iso

in stan
n ¼ ðp1 � p2Þ � ðp1 � p3Þ
ðp1 � p2Þ � ðp1 � p3Þ

�� �� : ð2Þ
The sign of the normals should be consistent with the sensor direction. Thus for
all triangle normals ni, the scalar product hni; si with the sensor direction, s, should

have the same sign. The normal at each vertex of a triangulated image is first com-

puted as the average of normals of all triangles containing the vertex. Second, this

normal is filtered by averaging using normals at vertices of adjacent triangles. This

procedure yields normals at vertices. In order to match points not only to vertices

but to the triangulated surfaces, the normal at interior points within triangle bound-

aries is computed as a linear interpolation of the normals at vertices. Thus for any

point p on a triangle, the normal nðpÞ is obtained as
nðpÞ ¼ b1n1 þ b2n2 þ b3n3; ð3Þ

where b1, b2, and b3 are barycentric coordinates of p such that b1 þ b2 þ b3 ¼ 1.

Vectors n1; n2; n3 represent normals at vertices p1; p2; p3 of the triangle.

Using Eq. (3) the closest point pc to point p is defined as
p ¼ pc þ dnc; ð4Þ

where nc is the normal at pc and d is the distance between p and pc along nc. In this

equation d is the distance between the point and the surface. The computation of the

signed distance field is based on this definition. Interpolated normals, closest point pc
along the normal nc, and the closest point pe found using Euclidean distance are

illustrated in Fig. 1. The effect of using the distance in the direction of filtered

normals for matching is illustrated in Fig. 2.

The distance field is calculated only within some envelope of the surface. Accord-
ing to our definition of the distance, this envelope is bounded by two iso-surfaces

that are obtained by displacing each vertex of the original triangulated image in

the direction of the normals for some constant value � referred to as the envelope

size. An example of an envelope is shown in Fig. 3.
. 2D slice through a fundamental prism associated with a generator-triangle T ð0Þ and bounded by

-triangles T ð�Þ and T ð��Þ. (a) Interpolated normals (b) Closest point pe on the surface to a point p

dard Euclidean sense and the closest point pc in the direction of interpolated normals.



Fig. 2. Effect of matching in the direction of filtered normals. (a) Matching to the closest point. (b) Match-

ing in the direction of filtered and interpolated normals. The matched points are spread more evenly over

the second surface.

Fig. 3. 2D slice through a volumetric envelope for surface S. Iso-surfaces Sð�Þ and Sð��Þ bounding the

envelope are obtained by displacing each vertex pi of a surface S for a constant value � in the direction

of normals ni. Fundamental prisms Pi are depicted as regions in different shades of gray.
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As explained in Section 4.2, the envelope is partitioned into regions associated

with generator-triangles such that for all points in a region, the generator-triangle

contains the closest point (see Fig. 3). From the definition of distance in Eq. (4),

these regions coincide with fundamental prisms introduced in [4]. A fundamental

prism associated with a generator-triangle T is a region bounded by two iso-triangles

T ð�Þ and T ð��Þ as well as by three edge-surfaces. The edge-surfaces are bilinear

patches defined using two vertices of a generator-triangle T ð0Þ and their associated

normals. An example of a fundamental prism is shown in Fig. 4.
The three bilinear patches are parameterized as
b1ðu; dÞ ¼ ð1� uÞðp1 þ dn1Þ þ uðp2 þ dn2Þ;
b2ðu; dÞ ¼ ð1� uÞðp2 þ dn2Þ þ uðp3 þ dn3Þ;
b3ðu; dÞ ¼ ð1� uÞðp3 þ dn3Þ þ uðp1 þ dn1Þ;

ð5Þ
where u 2 ½0; 1� and d 2 ½��; ��, p1; p2; p3 are vertices of the generator-triangle T ð0Þ
and n1; n2; n3 are normals at the vertices. As defined in Eq. (4), the distance for any

point located inside a fundamental prism with respect to the associated generator-

triangle is computed as the solution of the following system:
½p1 þ dn1 � p; p2 þ dn2 � p; p3 þ dn3 � p� ¼ 0: ð6Þ

In Eq. (6), square brackets denote the scalar triple product. This equation yields up to

three real roots. We choose the root d for which the point p is contained within



Fig. 4. Example of a fundamental prism. (a) Fundamental prism formed by displacing vertices p1, p2 and

p3 of triangle T ð0Þ in the direction of normals n1, n2 and n3 for a constant distance �. Triangles T ð�Þ, T ð��Þ
as well as three bilinear patches bound the prism. One of the three bilinear patches is depicted as a shaded

region. (b) Shaded fundamental prism.

64 D. Tubic et al. / Computer Vision and Image Understanding 92 (2003) 56–77
triangle T ðdÞwhose vertices are p1 þ dn1; p2 þ dn2; p3 þ dn3. It can be shown that only

one root satisfies this condition. Barycentric coordinates b1, b2 and b3 of the point p in
triangle T ðdÞ correspond to the barycentric coordinates of the closest point in the

generator-triangle. Therefore, once the distance is known, the closest point is obtained

as
pc ¼ b1p1 þ b2p2 þ b3p3: ð7Þ

The gradient direction of the distance map is nothing but the normalized direction
towards the closest point:
rdðpÞ ¼ p� pc
p� pc

�� �� : ð8Þ
The two fields associated with a surface are the distance computed using Eq. (6)

and its gradient Eq. (8). These values are evaluated at each voxel center inside the

envelope of the surface. In practice, both fields (distance and gradient) are calculated

independently for each fundamental prism, and, to do so efficiently, they are com-

puted only at voxels inside the bounding box of the prism. As suggested in [11] in
order to improve efficiency, the fields should not be computed at all points in the

bounding box since only a few of these points might actually be inside the prism

(see Fig. 5). To find the set of points located inside the prism, it is first checked

whether a row of voxels in the bounding box intersects the prism. If this is the case,

there are two intersection points and the field is then computed only at lattice points

between these two boundary points. By doing so, the time required for computing

the field is significantly reduced.

4.4. Determining the size of the volumetric envelope

In order to create a connected distance field, the minimum size of the envelope �
must at least be equal to the length of the voxel diagonal [11]. On the other hand, the

maximum size of the envelope is a trade-off between maximum acceptable registra-



Fig. 5. A fundamental prism and its bounding box. Only a fraction of voxels are located inside the prism.

The fundamental prism is shaded in gray.
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tion error and the requirement that the envelope has no self-intersection. Therefore,

since the size and the shape of the model limit the size of the envelope, they also limit

maximal initial registration error. However, for pose refinement, it is reasonable to

expect that the sensor produces smaller registration errors than the size of the model.

Moreover it is worth noting that, in order to be successfully registered, a surface does
not have to be completely contained within an envelope: if the points initially located

in the envelope suffice to improve the pose of a surface, a larger number of points

should enter into the field, at each iteration.

As explained earlier, the purpose of dividing the envelope into non-overlapping

prisms is to allow an independent computation of the field for each triangle. How-

ever if the normals are insufficiently filtered, some prisms might degenerate (‘‘twist’’)

within the envelope, as illustrated in Fig. 6. Consequently, the prisms in the neigh-

borhood of the degenerate prism overlap and (see shaded region in Fig. 6b) the dis-
tance is not uniquely defined in the regions of overlap. There are three ways to

prevent prisms from degenerating. The first one is to reduce the size of the envelope

(which imposes another constraint on the maximum size of the envelope), so that

‘‘twists’’ occur outside the envelope. The second way is to filter normals sufficiently

thus moving ‘‘twists’’ outside the envelope as in Fig. 6c and, finally, to truncate only

degenerate prisms and their neighbors before the ‘‘twist’’ occurs (see Fig. 6d). Since

range images are graph surfaces, one should note that it is always possible to choose

(filter) normals so that an envelope of arbitrary size can be constructed. For in-
stance, taking all normals to be parallel to the sensor�s direction would satisfy this

condition, although it is a rather extreme case. Results presented in this paper were

obtained by filtering normals sufficiently to ensure that there is no degenerate

prisms.

In order to truncate the degenerate prisms or to reduce the size of the envelope to

avoid self-intersections, the maximum allowable distance �max has to be calculated

for each prism such that the prism bounded by T ð�maxÞ and T ð��maxÞ does not

contain twists. This maximum distance can be obtained by computing the intersec-
tion point qi of each line liðuÞ ¼ pi þ vni; i ¼ 1; 2; 3 with the facing edge-surface

defined in Eq. (5). If they exist, the three intersection points satisfy the following

equations:



Fig. 6. Example of degenerate prisms within an envelope. (a) Degenerate prism (b) Effect of a degenerate

prism on its neighbors. Region of overlap of prisms P2;P3 and P4 is shaded in gray. (c) Same envelope

with better filtered normals. The ‘‘twist’’ occurs outside the envelope. (d) Overlap of prisms avoided by

truncating degenerate prism and its neighbors.
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b1ðu1; d1Þ ¼ l3ðv3Þ ¼ q3;

b2ðu2; d2Þ ¼ l1ðv1Þ ¼ q1;

b3ðu3; d3Þ ¼ l2ðv2Þ ¼ q2:

ð9Þ
Finally, a line intersects the patch within the envelope if
06 ui 6 1 and ��6 di 6 �: ð10Þ

The intersection points can be easily calculated by representing the lines as inter-

sections of two planes and substituting these two equations into Eq. (5). The maxi-

mum positive distance is given as the minimum positive value of parameters di and vi
satisfying Eq. (10), while the maximum negative distance is given as their maximal
negative value. A degenerate cell and the intersection points described above are

illustrated, in 3D, in Fig. 7.

4.5. Incremental update of the fields

The sum of fields for multiple images contains both the implicit representation of

the surface as a distance field and its associated matching information in the form of



Fig. 7. An example of a degenerate prism in 3D. (a) Degenerate prism. (b) Shaded degenerate prism.
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a vector field corresponding to the gradient of the distance field. We refer to these

fields as integration fields. As mentioned above, the integration fields are obtained

by averaging fields for N individual images:
f intðpÞ ¼
XN
i

f iðpÞxiðpÞ
" #, XN

i

xiðpÞ
" #

; ð11Þ

dintðpÞ ¼
XN
i

diðpÞxiðpÞ
" #, XN

i

xiðpÞ
" #

; ð12Þ
where f denotes the vector (gradient) field, d denotes the signed distance field, and

where x represents the confidence level for the measured points, usually expressed as

the cosine of the angle between the direction of the sensor and surface normal. To

preserve the continuity of the fields, the weights xi should be interpolated in the same

way as the normals using the barycentric coordinates, i.e.
wðpÞ ¼ w1b1 þ w2b2 þ w3b3: ð13Þ

An example of the distance and vector fields is shown in Fig. 8. It should be noted

that the distance field d and the gradient field f can also be considered as a single

vector field df.

4.6. Image registration

Once the fields are computed, the registration is straightforward: the correspond-

ing point pc for a control point p is given as
pc ¼ pþ f intðpvÞ dintðpvÞ þ hf intðpvÞ; ðp� pvÞi½ �; ð14Þ

where pv is the closest lattice point (voxel centre)
pv ¼ bpc ¼ ½bx=Dþ 0:5c; by=Dþ 0:5c; bz=Dþ 0:5c�T ; ð15Þ



Fig. 8. 2D slice through the integration fields. The distance field dint is depicted as different shades of gray,

while the directions of gradient field f int are depicted as arrows.
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while D denotes voxel size (see Fig. 9). The factor f intðpvÞhf intðpvÞ; ðp� pvÞi com-
pensates for the error introduced by discretization of the field. Note that since this is

a linear interpolation, the closest point will not in general be exactly on the surface.

However, the produced error is sufficiently small as justified in the next section.

All measured points in an image are considered as control points. The optimal

rigid transformation in the least-squares sense, which aligns control and correspond-

ing points, can be found using quaternions [12] or geometric algebra [14].

There are two implementations of the registration algorithm. The first one is se-

quential since each image is registered to the integration field and then added to
it. The second one creates the integration field using all images and then registers

each image individually. Both algorithms are described in pseudo-code below.
Fig. 9. Matching a point p using the closest voxel centre pv. The closest point pc is obtained as in Eq. (14).
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Algorithm 1: Incremental Registration

Algorithm 2: Simultaneous Registration

While the first algorithm is more useful for registration and integration during im-

age acquisition, the second algorithm can be applied once the acquisition is com-

pleted in order to obtain the final model. Even though simultaneous registration is

expected to give better results since it does not accumulate registration errors, the

first algorithm should always be used prior to simultaneous registration. To see this,

consider the example in Fig. 10a where a single image is unregistered. During simul-

taneous registration, this error propagates and disturbs the registration of other im-
ages (Fig. 10b). For this reason simultaneous registration might take a considerable

number of iterations before converging, which is computationally expensive since the



Fig. 10. Error propagation during simultaneous registration.
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fields should be recalculated at each iteration. It is thus wiser to reduce the initial reg-

istration errors as much as possible using the first algorithm and then to apply the

second one to remove residual registration errors.

4.7. Surface reconstruction and visualization

The reconstructed surface model is simply obtained by extracting the zero-set of

the distance field. As mentioned before, the Marching Cubes algorithm, or a variant,

can be used for this purpose. Nevertheless, if the extracted surface is to be used only

to display the model, it is advantageous to perform ray-tracing through the volume

instead of rendering the surface extracted by the Marching Cubes algorithm. To do
so, the zero-crossing of the distance fields are located along the rays, and the local

surface orientation is estimated at the zero-crossing closest to the virtual camera.

There are two ways to estimate the local orientation of the surface. The simplest

one is to take the value of the gradient field at the closest voxel centre. This yields

a smooth rendered image if the normals were filtered. The second approach is to

estimate the local orientation in the same way as Marching Cubes: by locally trian-

gulating the surface inside the box formed by the 8 voxels closest to the point of

zero-crossing.
5. Results

In order to assess the performance of the algorithm it is very convenient to use

synthetic range images since both registration and measurement errors can be per-

fectly controlled. More importantly, the position of the images following registration

can be compared to their exact position. For this purpose, 12 perfectly aligned and
noiseless range images from a CAD model of a Beethoven statue were generated. Im-

ages were then transformed as follows: each image was translated along each axis for

a random value between 0 and 5 voxels and was rotated around each axis (while cen-

tered at the origin) for a random angle between 0 and 5 degrees. Rotation angles and

translation vectors have uniform distribution. Noise added to measured points
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followed a normal distribution. The assessment of the registration error is made by

comparing the position of each point in the registered model to its exact position. The

resolution of the synthetic images was 150� 150 while the resolution of the 3D lat-

tice was chosen 128� 128� 128 in order to match approximately the resolution of

images.
To provide experimental evidence supporting the claim that the filtering of nor-

mals makes the algorithm less sensitive to noise, the residual registration error was

measured for varying levels of image noise while keeping the registration errors con-

stant. The results shown in Fig. 11 indicate that the noise has a minor impact on the

performance of the algorithm.

One might argue that the discretization of the fields should result in a less accurate

registration. This is true but, since the model is reconstructed on a discrete lattice of

points, registration errors smaller than voxel size are invisible. Therefore it is suffi-
cient to reduce the registration errors below voxel size. Experimental results confirm

that the proposed algorithm meets this requirement. Fig. 12 shows the average and
Fig. 11. Registration error vs. level of image noise.

Fig. 12. Distribution of registration error for 12 noiseless images of a Beethoven statue. (a) Registration

error before registration. (b) Residual registration error after registration.
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the maximum error distribution for the Beethoven model before (a) and after (b)

registration.

The influence of noise on the convergence speed of the algorithm is illustrated

in Fig. 13 for both 12 noiseless images and 12 images corrupted by noise with a

standard deviation of 1 voxel. The diagrams on the right side show the change of
the norm of the rotation matrix while the plots on the left side show the change

of the translation vector as a function of the number of iterations. These dia-

grams show that the convergence of the algorithm is practically unaffected by

the noise.

Since the integration field is an average of all individual fields, model filtering is

performed automatically. An example of the surface reconstructed by registering

and integrating a single image with 1, 10, and 50 observations of the object from

a different viewpoint is shown in Fig. 14. The second image covers the left-hand side
of the first image. The images were generated as in previous experiments by ran-

domly perturbing position and orientation of images and corrupting them with
Fig. 13. Evolution of transformation parameters as a function of the number of iterations. Top row: Evo-

lution of translation (a) and rotation (b) for 12 noiseless images of Beethoven. Bottom row: Evolution of

translation (c) and rotation (d) for 12 images corrupted by noise of the standard deviation of 1 voxel.



Fig. 14. Example of filtering. (a) Reconstruction from a single image. (b) Reconstruction from 10 regis-

tered and averaged images (left side). (c) Reconstruction from 50 registered and averaged images (left side).

Since the registration algorithm provides an accurate pose for each image, there is no loss of fine details on

the reconstructed surface.
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noise. Note that averaging makes sense only if the images are well registered. Also

note that registering a very large number of images, for example a few thousands,

with a registration algorithm whose complexity is OðM2Þ with respect to the number
of images, is very difficult if not impossible for current algorithms. Another potential

problem is that a frame rate of 30 or 60 images per second clutters disk space rapidly.

By performing the reconstruction and filtering online, the redundant data can be dis-

carded as soon as its field is summed in the integration field.

Illustration of reconstruction and registration of the synthetic and real data is

shown in Fig. 15 for the Beethoven model and the model of a rabbit from the Stan-

ford image repository. Another example, a model of a duck, reconstructed from 12

range images obtained at NRCC is shown in Fig. 16. The envelope size for all three
models has been fixed to 3 voxels.

The execution time of the unoptimized algorithm, including I/O, on a 1.2GHz

PC, is 2 seconds per image of Beethoven model containing approximately 8000 tri-

angles each. For the rabbit model whose images contain around 80,000 triangles, the

execution time was below 15 seconds per image. Most of the time is spent on the

computation of the transformation: 3 s for the calculation of the field and 12 for

the iterative pose refinement. Although we did not implement this option, a subset

of all measured points could be chosen as control points thus accelerating the com-
putation of the transformation.



Fig. 15. Examples of reconstruction and registration. Top row: real range data from Stanford image re-

pository. Middle row: registration and reconstruction using noiseless synthetic data. Bottom row: registra-

tion and reconstruction using noisy images (standard deviation of noise 1 voxel).
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6. Conclusion

We have presented two algorithms suitable for online as well as for offline regis-

tration and integration of range images. For these two algorithms, measurements are

accumulated in an integration field which includes not only the implicit representa-

tion of the surface but also registration information in a vector field. This makes the



Fig. 16. Example of reconstruction and registration from real range data. Top row: side view of the whole

model. Middle row: top-view of the head detail. Bottom row: zoom on the wing.

D. Tubic et al. / Computer Vision and Image Understanding 92 (2003) 56–77 75
algorithms of linear complexity with respect to both the number of images and the
number of triangles built from the images. Adding a new image with N triangles re-

quires the computation of N fundamental prisms. Since correspondence is stored in

the created field, registration can be performed efficiently requiring Oð1Þ operations
per measurement. The correspondences are found in the direction of filtered normals

thus making the registration less sensitive to noise and producing a more uniform

distribution of corresponding points on the reconstructed surface.

Based on incremental registration and surface integration, the first algorithm is

well suited for interactive modeling. Actually, it is possible to integrate a model from
a continuous flow of range images that are not well aligned. Redundancy of range

measurements can thus be exploited to recover a higher quality model. The second

algorithm is a variation of the first algorithm; it is based on simultaneous registration

and can be applied a posteriori when data acquisition is completed. Even though the
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simultaneous registration does not accumulate registration errors and is thus ex-

pected to give better results, we observed only subtle differences between the recov-

ered models. Nevertheless, simultaneous registration is more computationally

expensive while the gain in the quality of registration is not necessarily significant.

A quantitative comparison of the two registration strategies should be made, but this
topic is beyond the scope of this paper.

One apparent drawback common to all volumetric approaches is the limited res-

olution imposed by memory requirements and computational complexity. The num-

ber of voxels, and consequently the number of operations, grows as a power of 3

with the resolution. Moreover, representing a surface, which is a 2D object, in a

3D volume leads to very inefficient memory usage since most of the voxels remain

unused. It thus appears more difficult to build precise models for very large objects.

One could recover surface sections independently in a set of local overlapping vol-
umes but this approach is not ideal since efficiency is lost, at least partially. There

are several proposed solutions for the memory requirement issue such as run-length

encoding or octrees for locally adapting the resolution. However, these solutions are

more or less sophisticated data structures that do not convey geometric properties of

the shape they represent. More efficient and useful compression schemes are cur-

rently being explored.
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