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Seed localization from fluoroscopic images or radiographs
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An automated procedure for the detection of the position and the orientation of radioactive seeds on
fluoroscopic images or scanned radiographs is presented. The extracted positions of seed centers
and the orientations are used for three-dimensional reconstruction of permanent prostate implants.
The extraction procedure requires several steps: correction of image intensifier distortions, normal-
ization, background removal, automatic threshold selection, thresholding, and finally, moment
analysis and classification of the connected components. The algorithm was tested on 75 fluoro-
scopic images. The results show that, on average, 92% of the seeds are detected automatically. The
orientation is found with an error smaller than 5° for 75% of the seeds. The orientation of over-
lapping seed$10%) should be considered as an estimate at best. The image processing procedure
can also be used for seed or catheter detection in CT images, with minor modificatior2010
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[. INTRODUCTION orientation of the seeds in 3D space. On the other hand, the
fluoroscopic images or radiographs represent a projection of
the complete seeds, from which the orientation of the seeds
n be recovered, as will be shown in the following sections.
This paper describes the procedure that is now clinically
sed at our institution for automatic seed position extraction

Three-dimensiona(3D) reconstruction of implants requires
three sets of projections of seeds taken from different pe
spectives. To provide those projections, the seed centers hat8
to be located on radiographs or fluoroscopic images. Until

recently, the seed locations were manually extracted fron) . i . :
radiographs. Usually the seeds were marked with opaqumCIUd'ng orientations of seeds. The purpose of this proce-
' gure is to provide the input for a 3D implant reconstruction

paint, which makes a good contrast when scanned. Once th . . .
algorithm. A companion paper describing a new, robust and

'mages are obtalned,. an image processing software can b ecise algorithm for a 3D reconstruction of permanent pros-
used to convert the images into binary images and IocatEate implants follows up this paper

seed cer;t(fers. ﬁ,‘t our 'nSt'tu_lt_'ﬁ,n' SCISN |maghe software o complete procedure of seed extraction from fluoro-
V\{as usz ) ort IS purpose. h IS proce ”ure 'S'k, owever, \;]er¥c0pic images requires several steps as shown in Fig. 1. In
slow and imprecise, since when manually marking more tha,q ‘sections that follow, each step will be explained in full

100 seeds, the operator is likely to produce errors. AlSO, POgetail. Some steps are well-known procedures or algorithms
sitioning of film on the scanner is never perfect. and they will be only briefly explained for the sake of com-
Automatic seed extraction from fluoroscopic images repleteness.
quires special attention since a simple thresholding will al-
most never yield an acceptable result, due to the underlying
structure that can have both higher and lower intensities tha
the seeds. To our best knowledge, no algorithm for automati([:?' IMAGE ACQUISITION
seed position and orientation extraction from fluoroscopy or To provide the input for the implant reconstruction algo-
radiograph has been presented in the literature. rithm, we opted for fluoroscopy, which greatly saves acqui-
Recently, CT has become a prominent method for seedition time when compared with radiographs, while reducing
localization! However, due to slicing effect of the CT or costs. Also by using a computer to acquire images, there is
MRI, it would be very hard, if not impossible, to recover the no need for radiographs and no manual steps are required
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Fic. 1. Seed extraction procedure.

cally, we found that the following angles are the optimal
choice: image 1+-35°, 409; image 2—0°; image 3-35°,
40°].

For most patients, images taken:a#0° can be used for
automatic seed extraction. However, for larger patients, the
underlying bone structure can render these images unusable
due to poor contrast and high level of noise. To assure that
the reconstruction can be done for all patients, five images
(angles—40°, —35°, 0°, 35°, and 4Q°are taken. The image
of a seed is only X8 pixel large and the simulator ZOOM

during the acquisition except the positioning of the gantry.op»[ion is also used to facilitate seed detection.
However, the procedure presented here can also be used on

scanned radiographs.

The algorithm for 3D reconstruction of implants requires”'- NOISE REDUCTION AND IMAGE
three sets of projections of seeds taken from different perfENHANCEMENT

spectives. The choice of perspectives is limited by the simu-  Since the fluoroscopic images are static, the best way to
lator, which allows only a rotation of the image intensifier reduce the noise while preserving all the image features is
and x-ray source around the patient. Also, to avoid impreciframe averaging. To improve the noise reduction we should
sion caused by small parallaxes, the difference between thgse as many frames as possible. On the other hand, we
perspectives should be as large as possible, specifically gashould avoid irradiating the patient unnecessarily. An image
try angles of-45°, 0°, and 45° would be the best choice. Onobtained as an average of five frames is a good compromise
the other hand, on lateral images the underlying bone strugetween image quality and patient expos(equivalent to

ture is too large to allow automatic extraction since the seedgne to two radiographsNote that if a very large number of
might be almost invisible and masked by noise as seen iftames is used for averaging, the resulting image might be

Fig. 2(b).

blurred due to movement of the patient.

The choice of gantry’s angles for the three images is @ The intensity of x rays at the image intensifiil ) pass-
compromise between the above-explained demands. Empifing through the patient body is approximately

Fic. 2. (a) Image taken at 0°%b) Image taken at 90°.
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wherelq is initial intensity of x ray,| is the intensity of x
rays at the XII, angt(Xx,y) describes the absorption of x rays
in the patient body. Clearly, the gray-level intensity of seeds
on the image depends on the thickness of other objbotse
structure$ through which the x ray travels. To correct this,
the image is transformed as follows:

v(xy)=log(u(x,y)+1), 2
wherev is the transformed image, andis the original im-
age. This way the image becomes a simple sum of the at-
tenuation of the body and the seeds. The contrast of the
resulting image is enhanced by normalizing the image using
the following transformation:

v(X,y)= MZSH 0.5, &)

max min

whereu,;, andu,, are minimal and maximal gray levels in
the image,v is transformed image, and is the original
image.

The result of this operation is illustrated in Fig. 3, which
shows the original imagéa) and the normalized imagg).

IV. CORRECTION OF IMAGE INTENSIFIER
DISTORTIONS

For the correction of the XII distortions, the method de-
scribed in Ref. 2 was adopted. For the sake of completeness
it will be briefly described but for more details see Ref. 2.
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b)
b) Fic. 4. The calibration grid ata) 0° and(b) 90°.
Fic. 3. The original image is shown ife) while the normalized image
appears in(b). N
SX:EB (Xe—Xc)?, (6)
|=
The XIlI distortion is modeled using a fifth-order polyno- N
mial. Coefficients of this polynomial are determined using an Sy= 2 (Ye—VYo)?, (7)

object of known geometry, usually a rectangular grid of holes 1=0
as displayed in Fig. 4. The calibration procedure was perwherex,,y, are the correct positions of measured points and

formed for gantry positions in range90° to 90°, in 1° steps. N is the number of points. The solution can be obtained using
The relation between measured positions of holes and cothe least-squares technique.

rected positions can be expressed as follows: Note that the same procedure that will be described in
" " Sec. V can be used to automatically detect holes on the grid.

i i This way the calibration procedure can be made completely
Z Z Pi,j¥m> (4) automatic. A software was designed that can detect holes on

the grid, find corresponding exact positions, and calculate the

M M polynomial coefficients.
Ye= 2 Ym 2y G X (5
- = V. BACKGROUND REMOVAL
whereM =5 is the order of the polynomiak.,y. are cor- Before proceeding with seed detection, the image has to
rected coordinates,, Y, are measured coordinates, gnd]  be converted to a binary image containing only the seeds.
are polynomial coefficients. Due to surrounding bone structure, a simple thresholding is
The coefficients are calculated by minimizing the follow- not sufficient since the bones can have both smaller and
ing functions: larger intensities than seeds, as shown in Fig).2
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This problem can be effectively solved using a morpho-
logical top-hat opening. A description of the mathematical
morphology is beyond the scope of this paper and only the
operations needed to perform background removal will be
presented here. For more details on mathematical morphol-
ogy see Ref. 3.

In our case, background removal can be done using only
four basic operations of mathematical morphology.

Erosion:

E(x(m,n))=min{x(m+i,n+j)—k(i,j)}, 1,jeW. (8)
Dilatation:

D(x(m,n))=maxXx(mi,n—j)+k(i,j)}, i,jeW. (9
Opening:

D(E(x(m,n))). (10)
Closing:
E(D(x(m,n))). (11

Herex is an input imagek is a structuring element, arw is
its support. The structuring element has a shape of a sphere
with radius 7.

Morphological opening can be considered as an operation
that cuts peeks smaller than the structuring element. The
background removal is performed by subtracting the original
image and the opened image. This operation is called top-hat
opening. The result of top-hat opening is illustrated in Fig.
5(b).

VI. AUTOMATIC THRESHOLD SELECTION

The intensity of seeds on fluoroscopic images or radio-
graphic films depends on the thickness of bone structures and
is different for each patient. It is therefore impossible to
specify in advance a fixed threshold. This problem is solved
using an algorithm for automatic threshold selection: bidi-
mensional entropy methddThis algorithm gives better re-
sults than the algorithms based on gray-level histogram only,
since it also considers the spatial relationship between pixels.

The underlying principle of this algorithm is the maximi-
zation of the entropy of two-dimensional histogram. For each
pixel of the original imagai(x,y), the average value of its
neighborhood(a window 3x 3 pixels is calculated which
gives another imagen(x,y). The two-dimensional histo-
gramf;; is the number of occurrences of the valuesdj in
the two images.

Using this histogram we calculate the joint-probability
function: c)

b)

pij= fij IN, Fic. 5. (a) Original image,(b) image after top-hat openingg;) thresholded
) o . image.
whereN is the number of pixels in the image.

We assume that the image contains only two groups of
pixels: the objec{A) and the backgroun(B). The entropy

for those two groups of pixels for the threshoklandt are Group B:

as follows.
Group A: H(B)=In(1—Pg)+(Hmm—Hgs)/(1—Psy, (13
H(A)=In(Pg) +Hg/Pyg;. (12 where
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(14

. Pij In(pij), (15)

i=1i=

andm is the maximal gray level.

The threshold values andt are the values that minimize

the following function:
P(8,0)=In[Ps(1—Ps) ]+ Hst/ Py

+(Hmm_Hst)/(1_Pst)- (16)
Finally the binary image is obtained as follows:
1 if u(x,y)>s and m(x,y)>t
b(x,y)= : (17)

0 otherwise

The result of thresholding is shown in Fig. 5.

VII. LABELING
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b)

Fic. 6. (@) Examples of overlapping seedb) Ideal seeds at various angles.

To obtain the vertices of this rectangle, the pixels belong-

ing to the particle are transformed as follows:
a=XCcosf+ysing, (21

B=—Xxsinf+y cosé, (22

®mins ¥maxs Bmin, and Bmax are vertices of the rectangle:

Once the binary image is obtained, all the disconnectegamm Biin)s (@min+Brads (@masBi)s NG @ Bman)-
components have to be labeled. The simplest algorithm is the Length of the component:

recursive labeling, which proceeds as follows:

(1) Starting at the top left-hand corner, scan the image until

first white pixel is found.
(2) Mark the pixel and test its neighbo¢®ur connectef
(3) For all white pixels repeat stef?) until no more con-
nected pixels remain.
(4) Find the next unlabeledhite pixel and go to steg2). If

the right-bottom corner is reached stop the procedure.

VIIl. PARTICLE ANALYSIS

After the labeling, we need to calculate the positions of
the seed centers. At this step the problems concerned co@
nected or overlapping seeds. The seeds are separated in tw
groups: components that contain one seed only and compé—
nents that contain two or more seeds. In order to achieve this,

moments of all components are calculated.
(1) Center of mass

(18)

whereW s the region of the component ahtis the number
of pixels in the component
(2) Central moments

tpg= 2 2 (X=X)P(y=y)% (19
(x,y)eW
(3) Orientation
1 2
0= Etan‘l % (20
M2,07™ Mo,

= Cmax Xmin- (23
Width of the component:
W= Bax— Bmin- (24)

(5) Area, simply defined as the number of pixels
Finally using the above-presented analysis, the compo-
nents are classified as follows:

(1) Components whose area is smaller than 12 are consid-
ered as noise and are ignored.

) Components whose lengthand widthw satisfy | <15,
andw<7 are considered as single seed.

3) The other components contain more than one seed and

are analyzed separately.

For the components that contain one seed only, its center
is taken to be the center of masg,Y).

The other components contain more than one seed. A few
cases of overlapping seeds are illustrated in Fig). @hose
components are analyzed using an algorithm based on simu-
lated annealing. In essence the algorithm tries to reconstruct
the component using the predefined “perfect” seeds, Fig.
6(b). In other words the algorithm tries to find the number,
positions, and the orientations of the “perfect” seeds that
best approximates the original particle by minimizing the
following cost function:

> > luxy)—rx.yl, (25)
(x,y)eW

whereu is defined asi(x,y) =0o(x,y)*b(x,y). Imagesh and

(4) Bounding rectangle (smallest rectangle containing theo are the binary image and the image after the morphological

particle).
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opening, respectively, while(x,y) is reconstructed image:
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Number of seeds
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Fic. 8. Determination of the uncertainty of the seed orientation found by the
algorithm for 2000 individually identified seeds. The error is computed by
subtraction between the real seed orientation as manually medgueet

sion not better than 3%and the one automatically found.

(i) The “temperature” is lowered using the following
schedulec,, ;=c-0.99.

(iv)  The algorithm stops when the temperature falls below
0.5.

The reconfiguration is made as follows.

Choose at random a pixel inside the particle, one seed,
and the new orientation for the seed. If the position is occu-
pied, exchange the positions of the chosen seed and the seed
that occupies the chosen position. If not, assign a new posi-
tion and orientation to the chosen seed.

Since the number of seeds in the particle is unknown the
algorithm is repeated for the clusters of 2 and 3. The prob-
b) ability that the particle contains more than three seeds is very
small, and if it happens manual intervention is usually re-

Fic. 7. (a) Automatically detected seeds as found by the algorittih.  quired. The number of seeds that minimizes the cost function
Automatic evaluation of the seed orientations based on the moment analysjg accepted as the correct number of seeds.
of the particles.

IX. RESULTS AND CONCLUSIONS

N The algorithm has been tested on 75 images and used
rXY) =2 S, (X+xi,y+yy). (26)  clinically on more than 300 images. On average the algo-
B rithm detects about 92% of the seeds correctly. An example

of the extraction procedure is shown in FigajZ The auto-

S, (X,y) is an image of “ideal” seed with an orientatiap, ) : - .
i . . . . .. matically estimated orientations, for a sample of 2000 seeds
and (x;,y;) is the position of its center. The average intensity R . i
from clinical implants, were compared with manually esti-

.Of the.“ideal" seed _is adjusted to.correspond o the aVer‘f:‘gemated orientations. The histogram in Fig. 8 shows the error
intensity of the particle. The solutions of the problem are thedistribution of the orientation estimate. An example of the
positions §; ,y;), the orientations; , and number of seed$ .

that minimizes the function Eq25). orientation estimation is shown in Fig(bj.

The function[Eqg. (25)] is minimized using simulated The C_omplete procedure described p_revpusly is imple-
.67 . s mented in G-+. On average, the execution time of the al-
annealind”’ The parameters of the algorithm are specified as___. : !
follows: gorithm was 16 s/image. The first three stgps (_jo not depend
' on the number of seeds and the execution time for those
(i) The initial configuration is random. steps was approximately 1 s. The execution time for the
(i) Ly is fixed. Step9g2) and (3) are repeated until the component analysis is negligible. Analysis of components
number of accepted reconfigurations is larger or equathat contain overlapping seeds requires about 15 s. All results
to 10X number of seeds or the number of rejectedwere obtained using a PC with Intel Pentium IIl processor

reconfigurations is larger than 180nhumber of seeds. running at 733 MHz.

Medical Physics, Vol. 28, No. 11, November 2001



2271 Tubic et al.: Automated seed detection and 3D reconstruction. | 2271

b)
b)

Fic. 9. lllustration of the detection of the seeds in CT imadasOriginal
image.(b) Detected seeds. Fic. 10. lllustration of the detection of the catheters in CT imades.
Original image.(b) Detected catheters.
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