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Abstract

Auwtomatic shot boundary detection has been an active research
area for nearly a decade and has led to high performance detection
algorithms for hard cuts, fades and wipes. Reliable dissolve
detection, however, is still an unsolved problem. In this paper, we
present the first robust and reliable dissolve detection system. A
detection rate of 75% was achieved while reducing the false alarm
rate to an acceptable level of 16% on a test video set for which so
far the best reported detection and false alarm rate had been 66%
and 59%, respectively. In addition, a dissolve’s temporal extent is
estimated, too. The core ideas of our novel approach are firstly the
creation of a dissolve synthesizer capable of creating in principle
an infinite number of dissolve examples of any duration from a
video database of raw video footage allowing us to use advanced
machine learning algorithm such as neural networks and support
vector machines which require large training sets, secondly, two
simple features capturing the characteristics of dissolves, thirdly, a
fully temporal multi-resolution search based on a fixed-position
and fixed-scale transition/special effect detector enabling us to
determine also the true duration of detected dissolves, and finally,
a post-processing step which uses global motion estimation to
further reduce the number of falsly detected dissolves.

1 Introduction

Almost all current shot detection methods are either based on
simple rules or simple statistical tests. While such ‘simple’
approaches have been quite successful for hard cut, fade and wipe
detection, all approaches proposed so far have problems with
detecting dissolves reliably. In this paper we therefore propose to
apply advanced pattern recognition and machine learning
techniques, which have proven themselves to be suitable for
complex detection and recognition tasks such as face detection, to
the problem of reliable dissolve detection [5,7].

There might be a good reason why people have never tried this
before for complex transitions such as dissolves, wipes and swirls:
It is tedious to hand-label training examples, especially if they do
not appear as regular and often as hard cuts. We will argue in
Section 4 that a properly designed dissolve synthetizer makes the
process of tedious hand-labeling superfluous. Obviously the
synthesizer approach is not restricted to dissolves, but can be
applied to any transition effect. Therefore, we will often use the
term ‘transition’ instead of ‘dissolve’ to point this out. Section 5
introduces two computationally cheap features to capture the
characteristics of dissolves, before Section 6 details the training and
classification process. It is followed by detailed experimental
results. Section 8 concludes the paper.

2 Related Work

Much work has been done on automatic shot boundary detection in
videos. Early work concentrates mainly on hard cuts, while
summarizing all other kinds of transitions undifferentiatedly under
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“soft” cuts. Reported performance numbers were usually
dominated by hard cuts {1,3,4,9]. Recent related work geared
towards specialized detectors. For instance [8] addresses the
problem of wipe detection.

So far, no technique for reliable detection of transition effects
beyond hard cuts, fades, and wipes has been published. Although
there are a few techniques for dissolve detection with a sufficient
hit rate between 50% and 80%, reported false alarm rates of 100%
and up clearly identifies them as unreliable [4].

Dissolves are inherently difficult to detect since two video
sequences are temporally as well as spatially intermingled at any
time. In order to employ a dissolve’s definition directly for
detection, the two sequence must be separated. Unfortunately, the
separation of two intermingled sources is inherently difficult.

3 Design Decisions and System Overview

DEFINITION. A dissolve sequence D(x,?) is defined as the
mixture of two video sequences S,(x,?) and S,(x, ), where the
first sequence is fading out while the second is fading in:

D, 1) = f,(1)- S O +f,(0) - S,(x, 1) , 1€ [0,T] (1)

The most common dissolve types are cross-dissolves with

() = (T-0/T ,f,(1) =t/T (2)
and additive dissolves with
fl(t)={l if (1)) fZ(t)z{r/c2 if (1 < c5)
(T-0)/(T-¢,) else 1 else

c; = 10,T[ ,cp = 10, T( 3)

TYPES OF DISSOLVES. Basically three different kinds of
dissolves can be distinguished based on the visual difference
between the two shots involved:

(1) The two shots involved have different color distributions.
Thus, they are different enough such that a hard cut would be
detected between them if the dissolve sequence were removed.

(2) The two shots involved have similar color distributions which
a color histogram-based hard cut detection algorithm would
not detect, however, the structure between the images is differ-
ent enough in order to be detected by an edge-based algorithm.

(3) The two shots involved have similar color distributions and
similar spatial layout. This type of dissolve represents a special
type of morphing.

DESIGN DECISIONS. In this work, we concentrate only on the
first two types of dissolves, since they clearly mark transitions
between semantic shots. The morphing-like dissolves are ignored
since they do only represent a transition from a technical point of
view and not from a semantic point of view. Moreover, we restrict
our detection scheme to dissolves lasting between 0.2 and 3



seconds, though our system can handle any range of durations.

SYSTEM OVERVIEW. The overall system consists of two large
components:

(1) At the core of the training system is the transition synthesizer.
The transition synthesizer can create from a proper video database
an infinite number of dissolve examples. We use it to create a large
training and validation set of dissolves with a fixed length and a
fixed position of the dissolve center. These sets are then used to
train iteratively with the so-called bootstrap method a heuristically
optimal fixed-scale and fixed-position transition detector [6].

(2) A multi-resolution transition detection approach is then
used to detect transition. In a first step, various frame-based
features are derived (Figure 1(a)). Each frame-based feature forms
a time series, which in turn is re-scaled to a full set of time series
at different sampling rates creating a time series pyramid (Figure
1(b)). Ateach scale, a fixed-size sliding window runs over the time
series, serving as the input to a fixed-scale and fixed-position
transition detector (Figure 1(c)). The fixed-scale and fixed
position transition detector outputs the probability that the feature
sequence in the window was produced by a transition effect. This
results in a set of time series of transition effect probabilities at the
various scales (Figure 1(d)). For scale integration, all probability
times series are rescaled to the original time scale (Figure 1(e)),
and then integrated into a final answer about the probability of a
transition at a certain location and its temporal extent (Figure 1(f)).

4 Transition Synthesizer System

The VIDEO DATABASE serves as the source of video sequences
for the transition synthesizer. It should consist of a diverse set of
videos. In the ideal case, all videos in the database are annotated
by their transition free video sub-sequences (henceforth called
shots). In order to create the transition example this information is
essential for the transition synthesizer to avoid accidentally using
two video sequences that already contain other transition effects.

The ideal video database can be approximated by adding only
videos to the database for which transitions besides hard cuts and
fades are rare. Current state of the art shot detection algorithms can
perform hard cut and fade detection reliably. We used the hard cut
algorithm proposed in [9] and the fade detection algorithm
proposed in [4] to automatically pre-segment 7 hours of home
videos without errors.

The TRANSITION SYNTHESIZER is supposed to generate a
random video sequence containing the specified number of
transition effects of the specified kind. The following parameters
must be given before the synthetic transitions can be created:

» N =Number of transition to be generated

» Prp(t) = Probability distribution of the durations of the transi-
tion effect

* Ry R), = Amount of forward and backward run before and after
the transition. Usually, Rfand Ry, will be set to the same value.

Then the transition synthesizer works as follows:

(1) Read in the list of all videos in the database together with their
shot description.
(2) Fori=1toN
(2.1) Randomly choose the duration d of the transitions
according to Prp(t)
(2.2) Determine the minimal required duration for both shots
as(d+R f) and (d + Ry), respectively.
(2.3) Randomly choose both shots SI=[ft,;] and
S§2=[t,5.t,5) subject to their minimal required duration.
(2.4) Randomly select the start time fy,;,,; and ¢y, of the
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Figure 1. System overview of the transition detection system

transition for S and S2 subject to £7+Rr < Lyay < 1og
~dandtgp < lygnp < tgy-Ry-d

(2.5) Create the video sequence as SI(tg,, I'Rﬁ’smn )+
Transiton(S1(ssamptstar 1+ D520 sian2 stara* ) +
SZ(’start2+d’tstan2+d+Rb)

S Dissolve Features

In this section we discuss two different classes of features:
contrast-based and color-based features. Both types of features are
influenced by dissolves in the same way, however, they respond
sometimes differently to typical false alarm situations. Thus using
both kinds of features jointly reduces the false alarm rate.

CONTRAST-BASED FEATURES. Generally, the image contrast
decreases towards the center of a dissolve and recovers as the
dissolve ends. This characteristic pattern can be captured by the
time series of the average contrast strength of each frame. A fast
measure of the contrast strength is the sum of the magnitude of the
directional gradients:



Figure 2. Performance of the three features for pre-filtering.
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The contrast-based feature strongly responds to type 2 and most

type 1 dissolves, since a different color content in the respective

shots usually goes along with different structural content.

For comparison, we also used the Edge-based Contrast (EC)
introduced in [4]. The EC captures and amplifies the relation
between stronger and weaker edges and is based on the Canny
edge detector. In our experiments both features were almost
always perfectly correlated, however, the CS is much faster to
compute and was therefore used in our experiments.

COLOR-BASED FEATURES. Based on the taxonomy of dissolve
types, typical color-based features should only be able to capture
type 1 dissolves. Fortunately, nearly all type 1 dissolves are also
type 2 dissolves, and most type 2 dissolves are also type 1
dissolves. We use a 24 bin YUV image histogram (8 bin per
channel) to capture the temporal development of the color content.

6 Training and Classification

The frame-based features introduced above show off a
characteristic pattern during a dissolve. It is our goal to develop a
fixed location and (almost) fixed duration dissolve classifier,
which can plug-in into our multi-resolution detection approach
(Figure 1). In addition, a simple and fast pre-filter is designed, too.
The main purpose of the pre-filter besides reducing the
computational load is to restrict the training samples to the positive
examples and those negative examples, which are more difficult to
classify. Such a focused training set usually improves the
classification performance.

PRE-FILTERING. The time series of our dissolve features almost
always exhibit a flat graph. Exceptions are sections with
transitions, camera motion and/or object motion. Thus, the
difference between the largest and smallest feature value in a small
input window centered around the location of interest is used for
pre-filtering. If the difference is less than a certain empirical
threshold the location will be classified as non-dissolve and not
further evaluated. For multi-dimensional data, the maximum
difference between the maximum and minimum in each dimension
is used as the criterion. The input window size was set empirically
to 16 frames.

Figure 2 shows the percentage of falsely discarded dissolve
location (x-axes) versus the percentage of discarded locations (y-
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axes). The data has been derived from our large training video set.
As can be seen from Figure 2, the YUV histograms outperformed
the other features. Combining YUV histograms with CS by a
simple OR strategy (one of them has to reject the pattern),
performed even better, and was chosen as the pre-filter. The
missed rate of accidentally discarded dissolve locations were set to
2% in all the subsequent experiments.

FIXED-SCALE/POSITION TRANSITION DETECTOR Given a
16-tap input vector from the time series of feature values, the fixed
scale transition detector is supposed to classify whether the input
vector is likely to be calculated from a certain type of transition
lasting about 16 frames. There exist many different techniques for
developing a classifier. For our work, we used a real-valued feed-
forward neural network with (NN) hyperbolic tangent activation
function. The size of the hidden layer was 8, which in turn were
aggregated into one output neuron. The value of the output neuron
was interpreted as the likelihood that the input pattern has been
caused by a dissolve.

For training and validation, we synthesized each 10 hours of
dissolve videos with 1000 dissolves, each lasting 16 frames. The
four 16-tap feature vectors around each dissolve’s center were
chosen to form the dissolve pattern training/validation set. All
other patterns which did not overlap with a dissolve and which
were not discarded by the pre-filter formed the non-dissolve
training/validation set. Thus, each training and validation set
contained 4000 dissolve examples, and about 20000 non-dissolve
examples.

Initially 1000 dissolve patterns and 1000 non-dissolve patterns
were selected randomly for training. Only the non-dissolve pattern
set was allowed to grow by means of the so-called ‘bootstrap’
method. This method, proposed by Sung [6], starts with an initial
set of non-dissolve patterns to train the NN. Then, the trained NN
is evaluated using the full training set. Some of the falsely
classified patterns of the training set are randomly added to the
non-dissolve set and a new, hopefully enhanced NN is trained with
the extended pattern set. The resulting NN is evaluated with the
training set again and additional falsely classified non-dissolve
patterns are added to the set. This cycle of training and adding new
patterns was repeated until the number of falsely classified
patterns in the validation set did not decrease anymore or nine
cycles had been evaluated. Usually between 1500 and 2000 non-
dissolve pattern were added to the actual training set by this
procedure. The NN with the best performance on the validation set
was selected for classification.

SCALE INTEGRATION. In our experiments, we observed that
the fixed-scale and fixed-position transition detector could be very
selective. It might only respond to a dissolve at one scale.
Therefore, we choose to implement a winner-takes-all strategy: If
two detected dissolve sequences overlap, then the one with the
highest probability value wins, i.e., the other is discarded. The
competition starts at the smallest scale (shortest detected dissolve
candidates) competing with the second smallest scale and goes up
incrementally to the largest scale (longest detected dissolve
candidates). This approach has been proven to be very effective in
determining the right duration of a dissolve.

POST-FILTERING. A large fraction of the remaining false alarms
are caused by camera motion such as pans. We have implemented
a 4-parameter global motion estimation algorithm [2] and ran this
motion estimation on the intervals where we have detected
dissolves. We then processed the raw results to decide if global
motion is present within each interval. For each frame, we
accepted the global motion parameters computed for that frame if



they were consistent with the previous and following 2 frames, and
if the translational motion was larger than one pixel. If motion
parameters were accepted for more than 2/3 of the frames in a
given interval, we concluded that there was global motion and
rejected the dissolve hypothesis.

Table 2 shows the results with and without taking into account the
global motion estimation. As can be seen, taking into account
camera motion reduces the number of false alarms. For some
cases, however, some true dissolves are incorrectly removed. This
situation arises when the camera motion in both segment of the
dissolve is similar, or when the center of the detected dissolve is
off the true dissolve center. This last situation is typically caused
by camera motion on one of the dissolve segment which interferes
with the detection algorithm. To compensate for this problem, we
need to find an approach to integrate the camera motion
parameters with the dissolve detection algorithm instead of using
it as a post-processing tool as we currently do.

7 Experimental Results

VIDEO SETS. The training video database was composed of 7
hours of home videos. All videos were encoded as MPEG-1 and
contained only hard cuts none of which were missed or incorrectly
detected by our hard cut detection algorithm [9]. The database was
used to create the training and validation pattern sets for the NN.
Both pattern sets were derived from 10 hours of synthetic video
with 1000 dissolve each lasting 16 frames. The training patterns
were also used to derive appropriate thresholds for the prefilter.

Dissolve detection performance was measured on S different video
sequences lasting about 3.5 hours (see Table 1). Four of them have
already been used in the comparative study of shot detection
algorithms in {4] enabling comparison with two recently proposed
dissolve detection approaches. Since those four sequences are not
publicly available, a newscast called ‘News1” from the MPEG-7
test set was added to enable comparison with other dissolve
detection techniques in future.

Table 1: List of test video sequences

Bay

Duration 3818 50:42] 10:35[ 1:.34:35 16:50]3:20:25
(hh:mm:ss)

# hard cuts 2971 976 78 773 140] 2264
# fades 1 19 1 7 12 40
# dissolves 24| 100 2 6 276 408
# wipes 9 - 2 - - 11
# shots 3321 1096 84 787 4291 2728

COMPARISON PROCEDURE. Given the total number of
dissolves, their locations and durations, the performance of the
different algorithms are measured by:

« hit rate  which is the ratio of correctly detected dissolves to its
actual number of dissolves

* false hits f which is the ratio of falsely detected dissolves to the
actual number of dissolves

‘We count each detected dissolve as a hit if and only if it temporally
overlapped at least by 40% with an actnal dissolve. Multiple
detections of the same dissolve were counted only once and
occurred only one time during our tests.

PERFORMANCE. One of the biggest advantage of our approach

is that it requires only the specification of two easily

understandable parameters:

(1) The percentage of falsely rejected dissolves by the pre-filter
which was set to 2% on the training set in experiments and
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(2) The minimal required response of the NN in order to declare a
dissolve. This threshold was set to 0.75 in experiments.

As can be seen in Table 2, our novel approach outperformed the
approaches based on the edge change ratio and edge contrast
[4,10]. At the same or better hit rate, the false alarm rate was
always significantly smaller. Note also that on a qualitative basis
we observed that the detector determined reliably the extent of
dissolve transitions.

147
58/37%:

22713

366/217%j:

%
Table 2: Comparison
approach and the approaches based on edge
change ratio (ECR) [10] and edge contrast [4]

8 Conclusion and Outlook

Reliable dissolve detection is an inherently difficult problem.
However, our approach achieved outstanding performance
compared to the approaches based on the edge change ratio and
edge contrast. At the same time, our approach could determine
very well the extent of a dissolve.
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